
1. Introduction

“Biorobotics” can be defined as the intersection of biology
and robotics. The common ground is that robots and ani-
mals are both moving, behaving systems; both have sensors
and actuators and require an autonomous control system
that enables them to successfully carry out various tasks in
a complex, dynamic world. In other words “it was realised
that the study of autonomous robots was analogous to the
study of animal behaviour” (Dean 1998, p. 60), hence ro-
bots could be used as models of animals. As summarised by
Lambrinos et al. (1997), “the goal of this approach is to de-
velop an understanding of natural systems by building a ro-
bot that mimics some aspects of their sensory and nervous
system and their behaviour” (p. 185).

Dean (1998) reviews some of this work, as do Meyer
(1997), Beer et al. (1998), Bekey (1996), and Sharkey and
Ziemke (1998), although the rapid growth and interdisci-
plinary nature of the work make it difficult to comprehen-
sively review. Biorobotics will here be considered as a new
methodology in biological modelling, rather than as a new
“field” per se. It can then be discussed directly in relation
to other forms of modelling. Rather than vague justification
in terms of intuitive similarities between robots and ani-
mals, the tenets of the methodology can be more clearly

stated and a basis for comparison to other approaches es-
tablished. However, a difficulty that immediately arises is
that a “wide divergence of opinion . . . exists concerning the
proper role of models” (Reeke & Sporns 1993, p. 597) in bi-
ological research.

For example, the level of mechanism that should be rep-
resented in the model is often disputed. Cognitivists criti-
cise connectionism for being too low level (Fodor &
Pylyshyn 1988), while neurobiologists complain that con-
nectionism abstracts too far from real neural processes
(Crick 1989). Other debates address the most appropriate
means for implementing models. Purely computer-based
simulations are criticised by advocates of sub-threshold
transistor technology (Mead 1989) and by supporters of
“real-world” robotic implementations (Brooks 1986). Some
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worry about oversimplification (Segev 1992), while others
deplore overcomplexity (Koch 1999; Maynard Smith 1974).
Some set out minimum criteria for “good” models in their
area (e.g., Pfeifer 1996; Selverston 1993); others suggest
there are fundamental trade-offs between desirable model
qualities (Levins 1966).

The use of models at all is sometimes disputed, on the
grounds that detailed models are premature and more ba-
sic research is needed. Croon and van de Vijver (1994) ar-
gue that “developing formalised models for phenomena
which are not even understood on an elementary level is a
risky venture: what can be gained by casting some quite gra-
tuitous assumptions about particular phenomena in a math-
ematical form?” (pp. 4–5). Others argue that “the com-
plexity of animal behaviour demands the application of
powerful theoretical frameworks” (Barto 1991, p. 94) and
“nervous systems are simply too complex to be understood
without the quantitative approach that modelling provides”
(Bower 1992, p. 411). More generally, the formalization in-
volved in modelling is argued to be an invaluable aid in the-
orising – “important because biology is full of verbal asser-
tions that some mechanism will generate some result, when
in fact it won’t” (Maynard Smith 1988, p. 231).

Beyond the methodological debates, there are also
“meta”-arguments regarding the role and status of models
in both pure and applied sciences of behaviour. Are models
essential to gaining knowledge or just convenient tools?
Can we ever really validate a model (Oreskes et al. 1994)?
Is reification of models mistaken, that is, can a model of a
process ever be a replica of that process (Pattee 1989; Webb
1991)? Do models really tell us anything we didn’t already
know?

In what follows, a framework for the description and
comparison of models will be set out in an attempt to an-
swer some of these points, and the position of biorobotics
with regard to this framework will be made clear. Section 2
will explicate the function of models, in particular to clarify
some of the current terminological confusion, and define
“biorobotic” modelling. Section 3 will describe different di-
mensions that can be used to characterise biological mod-
els, and discuss the relationships between them. Section 4
will lay out the position of robot models in relation to these
dimensions, and discuss how this position reflects a partic-
ular perspective on the problems of explaining biological
behaviour.

2. The process of modelling

2.1. The “model muddle” (Wartofsky 1979)

Many discussions of the meaning and process of modelling
can be found: in the philosophy of science, for example,
Hesse (1966), Harre (1970b), Leatherdale (1974), Bunge
(1973), Wartofsky (1979), Black (1962), and further refer-
ences throughout this article; in cybernetic or systems the-
ory, particularly Zeigler (1976); and in textbooks on
methodology – recent examples include Haefner (1996),
Giere (1997), and Doucet and Sloep (1992). They also arise
as part of some specific debates about approaches in biol-
ogy and cognition: in ecological modelling, for example,
Levins (1966) and Orzack and Sober (1993); in cognitive
simulation, for example, Fodor (1968), Colby (1981), Fodor
and Pylyshyn (1988), Harnad (1989); in neural networks,
for example, Sejnowski et al. (1988), Crick (1989); and in

Artificial Life, for example, Pattee (1989), Chan and Tid-
well (1993). However the situation is accurately summed
up by Leatherdale (1974): “the literature on ‘models’ dis-
plays a bewildering lack of agreement about what exactly is
meant by the word ‘model’ in relation to science” (p. 41).
Not only “model” but most of the associated terms – such
as “simulation,” “representation,” “realism,” “accuracy,”
“validation” – have come to be used in a variety of ways by
different authors. Several distinct frameworks for describ-
ing models can be found, some explicit and some implicit,
most of which seem difficult to apply to real examples of
model building. Moreover, many authors seem to present
their usage as the obvious or correct one and thus fail to
spell out how it relates to previous or alternative ap-
proaches. Chao (1960) noted 30 different, sometimes con-
tradictory, definitions of “model” and the situation has not
improved.

There does seem to be general agreement that modelling
involves the relationship of representation or correspon-
dence between a (real) target system and something else.1
Thus “A model is a representation of reality” (Lamb 1987,
p. 91) or “all [models] provide representations of the world”
(Hughes 1997, p. 325). What might be thought uncontro-
versial examples are: a scale model of a building which cor-
responds in various respects to an actual building; and the
“billiard-ball model” of gases, suggesting a correspondence
of behaviour in microscopic particle collisions to macro-
scopic object collisions. Already, however, we find some au-
thors ready to dispute the use of the term “model” for one
or other of these examples. Thus, Kaplan (1964) argues that
purely “sentential” descriptions like the billiard-ball exam-
ple should not be called “models”; whereas Kacser (1960)
maintains that only sentential descriptions should be called
“models” and physical constructions like scale buildings
should be called “analogues”; and Achinstein (1968) denies
that scale buildings are analogies while using “model” for
both verbal descriptions and some physical objects.

A large proportion of the discussion of models in the phi-
losophy of science concerns the problem that reasoning by
analogy is not logically valid. If A and A* correspond in fac-
tors x1, . . . , xn, it is not possible to deduce that they will
therefore correspond in factor xn11. “Underdetermination”
is another aspect of essentially the same problem – if two
systems behave the same, it is not logically valid to conclude
that the cause or mechanism of the behaviour is the same;
so, a model that behaves like its target is not necessarily an
explanation of the target’s behaviour. These problems are
sometimes raised in arguments about the practical applica-
tion of models, for example, Oreskes et al. (1994) use un-
derdetermination to argue that validation of models is im-
possible. Weitzenfeld (1984) suggests that a defence against
this problem can be made by arguing that if there is a true
isomorphism between A and A* , the deduction is valid, and
the problem is only to demonstrate the isomorphism. Sim-
ilar reasoning perhaps explains the frequently encountered
claim that a model is “what mathematicians call an ‘iso-
morphism’” (Black 1962, p. 222) – a one to one mapping –
of “relevant aspects” (Schultz & Sullivan 1972), or “essen-
tial structure” (Kaplan 1964). Within cybernetic theory one
can find formal definitions of models (e.g., Klir & Valach
1965) that require there to be a complete isomorphic or ho-
momorphic mapping of all elements of a system, preserv-
ing all relationships.

However, this is not helpful when considering most ac-
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tual examples of models (unless one allows there “to be as
many definitions possible to isomorphism as to model,” Co-
nant & Ashby 1991, p. 516). In the vast majority of cases,
models are not (mathematical) isomorphisms, nor are they
intended to be. Klir and Valach (1965) go on to include as
examples of models “photos, sculptures, paintings, films . . .
even literary works” (p. 115). It would be interesting to
know how they intend to demonstrate a strict homomor-
phism between Anna Karenina and “social, economic, eth-
ical and other relations” in nineteenth century Russia. In
fact, it is just as frequently (and often by the same authors)
emphasised that a model necessarily fails to represent
everything about a system. For example, Black (1962) goes
on to warn of “risks of fallacies of inference from inevitable
irrelevancies or distortions in the model” (p. 223) – but if
there is a true isomorphism, how can there be such a risk?
A “partial isomorphism” is an oxymoron; and more to the
point, cannot suffice for models to be used in valid deduc-
tion. Moreover, this approach to modelling obscures the
fact that the purpose in modelling is often to discover what
are the “relevant features” or “essential structures,” so
model usage cannot depend on prior knowledge of what
they are to establish the modelling relationship.

2.2. What use are models?

There are things and models of things, the latter
being also things, but used in a special way

(Chao 1960, p. 564)

Models are intended to help us deal in various ways with a
system of interest. How do they fulfill this role? It is com-
mon to discuss how they offer a convenient/cost-effective/
manageable/safe substitute for working on or building the
real thing. But this does not explain why working on the
model has any relevance to the real system, or provide some
basis by which relevance can be judged, that is, what makes
a model a useful substitute? It is easier to approach this by
casting the role of modelling as part of the process of ex-
planation and prediction described in Figure 1.

Figure 1 can be regarded as an elaboration of standard
textbook illustrations of either the “hypothetico-deductive”
approach or the “semantic” approach to science (see be-
low). To make each part of the diagram clear, consider an

example. Our target – selected from the world – might be
the human cochlea and the human behaviour of pitch per-
ception. Our hypothesis might be that particular physical
properties of the basilar membrane enable differently po-
sitioned hair cells to respond to different sound frequen-
cies. One source of this idea may be the Fourier transform,
and associated notion of a bank of frequency filters as a way
of processing sound. To see what is predicted by the phys-
ical properties of the basal membrane we might build a
symbolic simulation of the physical properties we think
perform the function, and run it using computer technol-
ogy, with different simulated sounds to see if it produces
the same output frequencies as the cochlea (in fact Bekesy
1960 first investigated this problem using rubber as the
technology to represent the basilar membrane). We could
interpret the dominant output frequency value as a “pitch
percept” and compare it to human pitch perception for the
same waveforms: insofar as it fails to match we might con-
clude our hypothesis is not sufficient to explain human
pitch perception. Or, as Chan and Tidwell (1993) concisely
summarise this process, we theorise that a system is of type
T, and construct an analogous system to T, to see if it be-
haves like the target system.

I have purposely not used the term “model” in the above
description because it can be applied to different parts of
this diagram. Generally, in this paper, I take “modelling” to
correspond to the function labelled “simulation”: models
are something added to the “hypothesis-prediction-obser-
vation” cycle merely as “prostheses for our brains” (Milin-
ski 1991). That is, modelling aims to make the process of
producing predictions from hypotheses more effective by
enlisting the aid of an analogical mechanism. A mathemat-
ical model such as the Hodgkin-Huxley equations sets up a
correspondence between the processes in theorised mech-
anism – the ionic conductances involved in neural firing, –
and processes defined on numbers – such as integration.
We can more easily manipulate the numbers than the
chemicals so the results of a particular configuration can be
more easily predicted. However, limitations in the accuracy
of the correspondence might compromise the validity of
conclusions drawn.

However, under the “semantic” approach to scientific ex-
planation (Giere 1997), the hypothesis itself is regarded as
a “model,” that is, it specifies a hypothetical system of which
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the target is supposed to be a type. The process of predic-
tion is then described as “demonstration” (Hughes 1997) of
how this hypothetical system should behave like the target.
Demonstration of the consequences of the hypothesis may
involve “another level” of representation in which the hy-
pothesis is represented by some other system, also called a
model. This system may be something already “found” – an
analogical or source model – or something built – a simu-
lation model (Morgan 1997). Moreover, the target itself can
also be considered a “model,” in so far as it involves ab-
straction or simplification in selecting a system from the
world (Cartwright 1983). This idea perhaps underlies Gor-
don’s (1969) definition of model: “we define a model as the
body of information about a system gathered for the pur-
pose of studying the system” (p. 5).

2.3. Theories, models, simulations, and sources

While the usage of “model” to mean the target is relatively
rare, it is common to find “model” used interchangeably
with “hypothesis” and “theory”2: even claims that “A model
is a description of a system” (Haefner 1996, p. 4); or “A sci-
entific model is, in effect, one or a set of statements about
reality” (Ackoff 1962, p. 109). This usage of “model” is of-
ten qualified, most commonly as the “theoretical model,”
but also as the “conceptual model” (Brooks & Tobias 1996;
Rykiel 1996; Ulinski 1999), “sentential model” (Harre
1970a), “abstract model” (Spriet & Vansteenkiste 1982), or,
confusingly, the “real model” (Maki & Thompson 1973), or
“base model” (Zeigler 1976). The tendency to call the hy-
pothesis a “model” seems to be linked to how formal or pre-
cise is the specification it provides (Braithwaite 1960), as
hypotheses can range from vague qualitative predictions
to Zeigler’s (1976) notion of a “well-described” base model,
which involves defining all input, output, and state variables
and their transfer and output functions, as a necessary prior
step to simulation. The common concept of the theoretical
model is that of a hypothesis that describes the components
and interactions thought sufficient to produce the behav-
iour: “the actual building of the model is a separate step”
(Brooks & Tobias 1996, p. 2).

This separate step is implementation3 as a simulation,
which involves representing the hypothesis in some physi-
cal instantiation – taken here in its widest sense, that is, in-
cluding carrying out mathematical calculations or running
a computer program, as well as more obviously “physical”
models. But as Maki and Thompson (1973) note: “in many
cases it is very difficult to decide where the real model [the
hypothesis] ends and the mathematical model [the simula-
tion] begins” (p. 4). Producing a precise formulation may
have already introduced a number of “technological” factors
that are not really part of the hypothesis, in the sense that
they are there only to make the solution possible, not be-
cause they are really considered to be potential components
or processes in the target system. Grice (cited in Cartwright
1983) called these “properties of convenience” and Colby
(1981) makes this a basis for distinguishing models from
theories: all statements of a theory are intended to be taken
as true, whereas some statements in a model are not.

Simulation4 is intended to augment our ability to deduce
consequences from the assumptions expressed in the hy-
pothesis: “a simulation program is ultimately only a high
speed generator of the consequences that some theory as-
signs to various antecedent conditions” (Dennett 1979,

p. 192); “models . . . help . . . by making predictions of un-
obvious consequences from given assumptions” (Reeke &
Sporns 1993 p. 599). Ideally, a simulation should clearly and
accurately represent the whole of the hypothesis and noth-
ing but the hypothesis, so conclusions based on the simula-
tion are, in fact, correct conclusions about the hypothesis.
However, a simulation must also necessarily be precise in
the sense used above, that is, all components and processes
must be fully specified for it to run. The “formalization” im-
posed by implementation usually involves elaborations or
simplifications of the hypothesis to make it tractable, which
may have no theoretical justification. In other words, as is
generally recognised, any actual simulation contains a num-
ber of factors that are not part of the “positive analogy” be-
tween the target and the model.

In the philosophy of science, discussion of “simulation”
models has been relatively neglected. Rather, as Redhead
(1980) points out, the extensive literature on models in sci-
ence is mostly about modelling in the sense of using a
“source” analogy. A source5 is a pre-existing system used in
devising the hypothesis. For example, Amit (1989) de-
scribes how concepts like “energy” from physics can be
used in an analogical sense to provide powerful analysis
tools for neural networks, without any implication that a
“physics level” explanation of the brain is being attempted.
Though traditionally the “source” has been thought of as
another physical system (e.g., a pump as the source of hy-
potheses for the functioning of the heart), it is plausible to
consider mathematics to be a “source.” That is, mathemat-
ical knowledge provides a pre-existing set of components
and operations we can put in correspondence to the hy-
pothesised components and operations of our target. Math-
ematics just happens to be a particularly widely applicable
analogy (Leatherdale 1974).

It is worth explicitly noting that the source is not in the
same relation to the hypothesis as the technology, that is,
what is used to implement the hypothesis in a simulation.
Confusion arises because the same system can sometimes
be used both as a source and as a technology. Mathematics
is one example, and another of particular current relevance
is the computer. The computer can be used explicitly as 
a source to suggest structures and functions that are part 
of the hypothesis (such as the information processing
metaphor in cognition), or merely as a convenient way of
representing and manipulating the structures and functions
that have been independently hypothesised. It would be
better if terms like “computational neuroscience” that are
sometimes used strongly in the “source” sense – computa-
tion as an explanatory notion for neuroscience – were not
so often used more loosely in the “technology” sense: “not
every research application that models neural data with the
help of a computer should be called computational neuro-
science” (Schwartz 1990, p. x). Clarity is not served by hav-
ing (self-labelled) “computational neuroethologists,” for ex-
ample, Beer (1990) and Cliff (1991) who apparently reject
“computation” as an explanation of neuroethology.

2.4. Biorobotic models

Figure 1 suggests several different ways in which robots and
animals might be related through modelling. First, there is
a long tradition in which robots have been used as the
source in explaining animal behaviour. Since at least
Descartes (1662), regarding animals as merely complex ma-
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chines, and explaining their capabilities by analogy with
man-made systems has been a common strategy. It was
most explicitly articulated in the cybernetic approach,
which, in Wiener’s subtitle to “Cybernetics” (Wiener 1948),
concerned “control and communication in the animal and
the machine.” It also pertains to the information processing
approaches common today, in which computation is the
source for explaining brains. Much work in biomechanics
involves directly applying robot-derived analyses to animal
capacities, for example, Walker (1995) attempts “to analyse
the strengths and weaknesses of the ancient design of
racoon hands from the point of view of robotics” (p. 187).

Second, animals can be regarded as the source for hy-
potheses in robot construction. This is one widely accepted
usage of the term “biorobotics” – sometimes called “bio-
mimetic” or “biologically-inspired” robotics. For example,
Ayers et al. (1998) suggest “the set of behavioural acts that
a lobster or lamprey utilises in searching for and identifying
prey is exactly what an autonomous underwater robot needs
to perform to find mines.” Pratt and Pratt (1998b) in their
construction of walking machines “exploit three different
natural mechanisms,” the knee, ankle, and swing of animal
legs to simplify control. The connection to biology can
range from fairly exact copies of mechanisms, for example,
Franceschini et al.’s (1992) electronic copy of the elemen-
tary motion detection circuitry of the fly, to adopting some
high level principles, for example, using the ethological
concept of “releasing stimuli” to control a robot via simple
environmental cues (Connell 1990), or the approach de-
scribed in Mataric (1998).

For the following discussion, however, I wish to focus on
a third relationship: robots used as simulations of animals,
or how “robots can be used as physical models of animals to
address specific biological questions” (Beer et al. 1998,
p. 777). The potential for building such models has in-
creased enormously in recent years due to advances in both
robot technology and neuroethological understanding, al-
lowing “biologists/ethologists/neuroscientists to use robots
instead of purely computational models in the modelling of
living systems” (Sharkey & Ziemke 1998, p. 164).

The following criteria have been adopted for the inclu-
sion of work in what follows as “biorobotic modelling,” to
avoid the necessity of discussing an unmanageably large
body of work in robotics and biological modelling:

It must be robotic: The system should be physically in-
stantiated and have unmediated contact with the external
environment; the transduction is thus constrained by
physics. The intention is to rule out purely computer-based
models (i.e., where the environment as well as the animal
is represented in the computer); and also computer sensing
systems that terminate in descriptions rather than actions.
This somewhat arbitrarily discounts verbal behaviour (e.g.,
visual classification) as sufficient; but to do so is consistent
with most people’s understanding of “robotic.”

It must be biological: One aim in building the system
should be to address a biological hypothesis or demonstrate
understanding of a biological system. The intention is to
rule out systems that might use some biological mecha-
nisms but have no concern about altering them in ways that
make it a worse representation, for example, industrial ro-
bot arms, most computer vision, most neural net con-
trollers. It also rules out much of the “behaviour-based” ap-
proach in robotics which uses “algorithms specifying robot
behaviours that have analogy to behaviours of life-form[s]”

(Yamaguchi 1998, p. 3204) but makes no serious attempt to
compare the results to natural systems. Probably the largest
set of borderline cases thus excluded is the use of various
learning mechanisms for robot behaviour, except those
specifically linked to animal behavioural or physiological
studies.

There is already a surprisingly substantial amount of
work done even applying these criteria. The earliest exam-
ples come from mid-century, where theories of equilibrium
(Ashby 1952), learning (Shannon 1951), and sensorimotor
control (Walter 1961) were tested by building “animal” ma-
chines of various kinds – a number of other early examples
are discussed in Young (1969). Current work tends to be
more focused on specific biological systems, and ranges
across the animal kingdom, from nematodes to humans.
Table 1 lists a selection of recent studies, and to illustrate
the approach I will describe three examples here in more
detail.

1. A robot model of rat hippocampus: Burgess et al.
(1997; 1998; 2000) have presented a model of the rat hip-
pocampus implemented on a robot. “The use of a robot en-
sures the realism of the assumed sensory inputs and enables
true evaluation of the navigational capability” (Burgess et
al. 1997, p. 1535). The robot uses edge-filtering on a cam-
era image to sense the distance of walls in its environment,
and a combination of visual and odometric information to
link the distance to the allocentric direction of the walls, ro-
tating in place to cover a sufficient field of view. These re-
searchers argue that these mechanisms “provide realistic
simulation . . . since the rat’s visual and odometric system
appear to be relatively unsophisticated” (Burgess et al.
2000, p. 306). This sensory information is encoded compu-
tationally by sensory “cells” that effectively have “receptive
fields” for different directions and distances of walls. These
feed to an array of “entorhinal cells” which combine con-
nections from sensory cells. These connect to the layer of
“place cells” with the connection pattern modifiable by
competitive learning: thus representing the learnt place de-
pendent activity of cells observed in rat hippocampus.
These cells further connect to a small number of goal cells,
which also receive input from “head direction” cells. By
Hebbian learning of these connections when a goal is en-
countered, the network forms a representation which can
be used to guide the robot’s movement back to a goal posi-
tion from novel locations.

“[To] maintain close contact with the experimental situ-
ations in which the place cell data constraining the model
was collected, the robot was tested in simple rectangular
environments” (Burgess et al. 2000, p. 306). The results
show the robot is capable of good self localisation while
wandering in the environment and can reliably return to the
goal position from novel locations. The effects of changing
the environment (e.g., the proportions of the rectangle, or
adding a new barrier) on the place cell representation and
the search behaviour can be compared to the results in rats;
some predictions from the model have been supported
(Burgess et al. 2000). They further predict that cells with
“receptive fields” for direction and distance of barriers will
be found within or upstream of the entorhinal cortex, but
this is yet to be confirmed.

2. A robot model of desert ant navigation: The impres-
sive homing capabilities of the desert ant Catyglyphis have
long been the subject of study (Wehner 1994). Several as-
pects of this behaviour have been investigated in robot
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Table 1. Examples of biorobot research. This is intended to be a representative sampling, not a fully comprehensive listing.

Subject area Examples References

Simple sensorimotor control
Chemical Moth pheromone tracking Kuwana et al. 1995; Ishida et al. 1999; Kanzaki 1996

Ant trail following Sharpe & Webb 1998; Russell 1998
Lobster plume following Grasso et al. 1996; Ayers et al. 1998
C. elegans gradient climb Morse et al. 1998

Auditory Cricket phonotaxis Webb 1995; Lund et al. 1998; Webb & Scutt 2000
Owl sound localisation Rucci et al. 1999
Human localisation Horiuchi 1997; Huang et al. 1995
Bat sonar Kuc 1997; Peremans et al. 1998

Visual Locust looming detection Blanchard et al. 1999; Indiveri 1998
Frog snapping Arbib & Liaw 1995
Fly motion detection to Franceschini et al. 1992; Hoshino et al. 1998; Huber & Bulthoff 1998; 

control movement 1997; Harrison & Koch 1999; Srinivasan & Venkatash 1997
Praying mantis peering Lewis & Nelson 1998
Human oculomotor relflex Horiuchi & Koch 1999; Shibata & Schaal 1999
Saccade control Clark 1998; Schall & Hanes 1998

Other Ant polarized light compass Lambrinos et al. 1997
Lobster anemotaxis Ayers et al. 1998
Cricket wind escape Chapman & Webb 1999
Trace fossils Prescott & Ibbotson 1997

Complex motor control
Walking Stick insect Cruse et al. 1998; Pfeiffer et al. 1995

Cockroach Espenschied et al. 1996; Nelson & Quinn 1998; Binnard 1995
Four-legged mammal Ilg et al. 1998; Berkemeier & Desai 1996

Swimming Tail propulsion Triantafyllou & Triantafyllou 1995; Kumph 1998
Pectoral fin Kato & Inaba 1998
Undulation Patel et al. 1998
Flagellar motion Mojarrad & Shahinpoor 1997

Flying Insect wings Miki & Shimoyami 1998; Fearing 1999
Bat Pornsin-Siriak & Tai 1999

Arms/hands Spinal circuits Hannaford et al. 1995
Cerebellar control Fagg et al. 1997
Grasping Leoni et al. 1998
Rhythmic movement Schaal & Sternad 2001
Haptic exploration Erkman et al. 1999

Humanoid Special issue Advanced Robotics 11(6): 1997
Brooks & Stein 1993
Hirai et al. 1998

Other Running & hopping Raibert 1986
Brachiation Saito & Fukuda 1996
Mastication Takanobu et al. 1998
Snakes Hirose 1993, Review in Worst 1998
Paper wasp nest construct Honma 1996

Navigation
Landmarks Ant/bee landmark homing Moller 2000; Möller et al. 1998
Maps Rat hippocampus Burgess et al. 1997

Gaussier et al. 1997
Search review Gelenbe et al. 1997
Collective behaviours Beckers et al. 1996

Melhuish et al. 1998
Learning Edelman et al. 1992; Sporns 2001

Scutt & Damper 1997
Saksida et al. 1997
Voegtlin & Verschure 1999
Chang & Gaudiano 1998
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models that operate in the same Sahara environment (Lam-
brinos et al. 1997; 2000; Moller et al. 1998). Insects can use
the polarisation pattern of the sky as a compass, with three
“POL” neurons in the brain integrating the response from
crossed-pairs of filters at three different orientations. This
sensor-neural morphology has been duplicated in the robot.
Two different models for extracting compass direction were
considered: a “scanning” mechanism that rotates to find a
peak response which indicates the solar meridian (as had
been previously proposed for the ant); and a novel “simul-
taneous” mechanism that calculates the current direction
from the pattern of neural output. The “simultaneous”
mechanism was substantially more efficient as the robot (or
ant) does not need to rotate 360 degrees each time it wants
to refer to the compass. This compass was successfully used
in a path integration algorithm, reducing the error in the ro-
bot’s return to its starting location.

A further development of the robot allowed the testing
of hypotheses about landmark navigation. A conical mirror
placed above a camera enabled the robot to get a 360 de-
gree view of the horizon comparable to that of the ant. The
“snapshot” model proposed by Cartwright and Collett 1983
was implemented first: this matches the landmarks in a cur-
rent view with a stored view, to create a set of vectors whose
average is a vector pointing approximately in the home di-
rection. The ability of this model to return the robot to a lo-
cation was demonstrated in experiments with the same
black cylinders as landmarks as were used for the ant ex-
periments. Further, a simplification of the model was pro-
posed, in which the robot (or animal) only stores an “aver-
age landmark vector” rather than a full snapshot, and it was
shown that the same homing behaviour could be repro-
duced. Möller (2000) recently implemented this in analog
electronic hardware to provide “insights as to how the vi-
sual homing might be implemented in insect brains”
(p. 243), and successfully tested this implementation on a
robot in reproductions of experiments performed on bees
in which landmarks are moved or removed.

3. A robot model of human motor control: Schaal and
Sternad (2001) present a comparison of human and robot
behaviour to analyse the control of motor trajectories. This
is used to addressed a critical question – does the apparent

“2/3 power law” relating endpoint velocity to path curva-
ture in human movement represent an explicit parameter
implemented directly in the nervous system, or is it merely
the by-product of other control mechanisms? The study
measured humans making cyclic drawing motions, and
modelled the behaviour using a seven degree-of-freedom
anthropomorphic robot arm, with PID control of joint
movements based on simple sinusoidal target trajectories.
The frequency, amplitude, and phase of the sinusoids were
estimated from measurements on the human subjects.
Schaal and Sternad found that “As in the human data, for
small perimeter values [the 2/3 law] was produced quite ac-
curately, but, as in the human subjects, the same deteriora-
tion of power law fits were apparent for increasing pattern
size” (p. 67). Moreover, they could explain these deviations
as a consequence of nonlinearities in the kinematic trans-
form from joint control to end-effector trajectories, and ex-
plain the power law as emergent from mechanisms for en-
suring smooth movement in joint space.

It can thus be seen that useful results for biology have
been already been gained from robotic modelling. But it is
still pertinent to ask: Why use robots to simulate animals?
How does this methodology differ from alternative ap-
proaches to modelling in biology? To answer these ques-
tions it is necessary to understand the different ways in
which models can vary, which will now be examined.

3. Dimensions for describing models

Figure 2 presents a seven-dimensional view of the “space”
of possible biological models. If the “origin” is taken to be
using the system itself as its own model (to cover the view
expressed by Rosenblueth & Wiener 1945) as “the best ma-
terial model of a cat is another, or preferably the same, cat”
p. 316), then a model may be distanced from its target in
terms of abstraction, approximation, generality or rele-
vance. It may copy only higher levels of organisation, or rep-
resent the target using a very different material basis, or
only roughly reproduce the target’s behaviour. Exactly what
is meant here by each of the listed dimensions, and in what
ways they are (or are not) related will be discussed in detail
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in what follows. They are presented as an attempt to cap-
ture, with a manageable number of terms, as much as pos-
sible of the variation described and discussed in the litera-
ture on modelling, and to separate various issues that are
often conflated.

Though it is generally more popular in the literature to
classify models into types (see e.g., the rather different tax-
onomies provided by Achinstein 1968; Black 1962; Haefner
1996; and Harre 1970b), there are precedents for this kind
of dimensional description of models. Some authors at-
tempt to use a single dimension. For example, Shannon
(1975) presents a diagram of models situated on a single axis
that goes from “exact physical replicas” at one end to “highly
abstracted symbolic systems” at the other. By contrast,
Schultz and Sullivan (1972) present a list of some 50-odd
different dimensions by which a model may be described.
One set of dimensions widely discussed in ecological mod-
elling was proposed by Levins in 1966. He suggested that
models could vary in realism, precision, and generality (in
his 1993 reply to Orzack and Sober’s 1993 critique, he notes
that this was not intended to be a “formal or exhaustive” de-
scription). Within the “systems” approach to modelling the
most commonly discussed dimensions are “complexity,”
“detail,” and “validity” as well as more practical or prag-
matic considerations such as cost (e.g., Rothenberg 1989 in-
cludes “cost-effectiveness” as part of his definition of simu-
lation). Brooks and Tobias (1996) discuss some proposed
methods for measuring these factors, and also point out
how some of the connections between these factors are not
as simple as seems to be generally thought.

Many of the debates about “appropriate” biological sim-
ulation assume that there are strict relations between cer-
tain aspects of modelling. Neural nets are said to be more
accurate than symbol processing models because they are
lower level; Artificial Life models are said to be general be-
cause they are abstract; neuromorphic models are said to be
more realistic because they use a physical implementation.
However, none of these connections follow simply from the
nature of modelling but depend on background assump-
tions about biology. Is inclusion of a certain level essential
to explaining behaviour? Can general laws of life be found?
Are physical factors more important than information pro-
cessing in understanding perception? The arguments for
using robot models in biology, as for any other approach, re-
flect particular views about biological explanation. This will
be further discussed in Section 4 which applies the defined
dimensions to describe the biorobotic approach.

3.1. Biological relevance

Is the biological target system clearly identified? Does 
the model generate hypotheses for biology?

Models can differ in the extent to which they are intended
to represent, and to address questions about, some real bi-
ological system. Work in biorobotics varies in biological rel-
evance. For example, Huber and Bulthoff (1998) use a ro-
bot to test the hypothesis that a single motion-sensitive
circuit can control stabilisation, fixation, and approach in
the fly. This work is more directly applicable to biology than
the robot work described by Srinivasan et al. (1999) utilis-
ing bee-inspired methods of motor control from visual flow-
fields, which does not principally aim to answer questions
about the bee. Similarly, the “robotuna” (Triantafyllou &

Triantafyllou 1995) and “robopike” were specifically built to
test hypotheses for fish swimming – “The aim of these ro-
bots is to help us learn more about the complex fluid me-
chanics that fish use to propel themselves” (Kumph 1998)
– whereas the pectoral fin movements implemented on a
robot by Kato and Inaba (1998), though based on close
study of black bass, are not tested primarily for how well
they explain fish swimming capability.

Another expression of this dimension is to distinguish be-
tween investigation of “the model as a mathematical state-
ment and the model as empirical claim about some part of
the physical world” (Orzack & Sober 1993, p. 535). Investi-
gating a model for its own sake is often regarded critically.
Hoos (1981) describes as “modelitis . . . being more inter-
ested in the model than the real world and studying only the
portions of questions that are amenable to quantitative treat-
ment” (p. 42). Bullock (1997) criticises Artificial Life where
“simulations are sometimes presented as ‘artificial worlds’
worthy of investigation for their own sake . . . However this
practice is theoretically bankrupt, and such [result] state-
ments have no scientific currency” (p. 457). But Caswell
(1988), for example, defends the need to investigate “theo-
retical problems” raised by models independently of their fit
to reality. Langton’s (1989) advocacy of investigating “life as
it could be” is an example. As in “pure” maths, the results may
subsequently prove to have key applications, but of course
there is no guarantee that the “model-creating cycle” will not
end up “spiralling slowly but surely away from reality”
(Grimm 1994, p. 645) without any reconnection occurring.

It is worth explicitly mentioning in this context that a
model that is “irrelevant” for biology might have utility in
other respects. Models may serve for purposes of commu-
nication or education; or be employed for prediction and
control. Moreover, there may be some value in investigat-
ing the technological aspects of a model: the mechanisms
may have utility independent of their adequacy in explain-
ing their origin. Arkin (1998) describes robots that abstract
and use “underlying details” from biological sciences “un-
concerned with any impact on the original discipline”
(p. 32). Such “models” should then be evaluated with re-
spect to engineering criteria,6 rather than how well they
represent some natural system.

Biologically “irrelevant” models, then, are those too far
removed from biology to connect their outcomes back to
understanding the systems that inspired them. For a non-
robotic example, doubts are expressed about the relevance
of artificial neural networks by, for example, Miall (1989):
“it is not clear to what extent artificial networks will help in
the analysis of biological networks” (p. 11). The main crite-
ria for relevance could be taken to be the ability of the
model to generate testable hypotheses about the biological
system it is drawn from. For example the robot studies of
Triantafyllou and Triantafyllou (1995) mentioned above
suggest that fish use the creation of vortexes as a means of
efficient tail-fin propulsion.

Arbib and Liaw (1995) provide as their definition of a “bi-
ological model”: “a schema-based model . . . becomes a bi-
ological model when explicit hypotheses are offered as to
how the constituent schemas are played over particular re-
gions of the brain” (p. 56) (in their case, this involves the use
of simulated and robot models of the visual guidance of be-
haviour in the frog). Generalised, this seems an appropriate
test for relevance: are the mechanisms in the model explic-
itly mapped back to processes in the animal, as hypotheses
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about its function? In biorobotics this may sometimes con-
cern neural circuitry, for example, in a model of auditory lo-
calisation of the owl (Rucci et al. 1999). But it can also occur
at a relatively high level, such as using “shaping” methods in
learning (Saksida et al. 1997) or involve testing a simple al-
gorithm such as the sufficiency of a small set of local rules to
explain collecting and sorting behaviour in ants (Holland &
Melhuish 1999; Melhuish et al. 1998). The point is to use the
robot model to make a serious attempt at addressing biolog-
ical questions, at whatever level these may exist.

This notion of “relevance” appears to be what at least
some authors mean by the term “realism” in describing
models. Churchland and Sejnowski (1988) appear to define
“realistic” in this way: “realistic models, which are genuinely
and strongly predictive of some aspect of nervous system
dynamics or anatomy” versus “simplifying models, which
though not so predictive, demonstrate that the nervous sys-
tem could be governed by specific principles” (p. 744). But
this is rather different to their definition in Sejnowski et al.
(1988) of a realistic model as a “large scale simulation that
tries to incorporate as much of the cellular detail as is avail-
able” made “realistic by adding more variables and more
parameters” (p. 1300). It seems unlikely that they believe
only models “realistic” in the latter sense can be “realistic”
in the former sense – indeed, they argue in Churchland et
al. (1990) that “a genuine perfect model, faithful in every
detail, is as likely to be incomprehensible as the system it-
self” (p. 54). However, “realistic” is often used to mean “de-
tailed,” or “not abstract.” For example: Beer et al. (1998)
specify “realistic” in relation to robot models as those which
“literally try to emulate in every detail a particular species
of insect” (p. 32); Manna and Pnueli (1991) define realism
as “degree of detail”; Palsson and Lee (1993) directly
equate “realistic” to “complex” – a decision on realism is a
decision on how many factors to include; and Orzack and
Sober (1993) redefine Levins’ (1966) concept of realism as
“tak[ing] into account more independent variables known
to have an effect” (p. 534).

However, it is clear that Levins (1966) was concerned to
argue against the assumption that a model can only be
made “realistic” by being more detailed. His discussion of
“real and general” models includes a number of quite sim-
ple and abstract examples: the issue of realism is the extent
to which they improve understanding of the biological sys-
tem, that is, what I have here called relevance. Schultz and
Sullivan (1972) make a useful distinction between model-
ling that tries to build a complete “picture of reality” versus
building a device for learning about reality: that is, it may
be possible for a model to be too detailed (or “realistic” in
one sense) to actually be productive of hypotheses (or “re-
alistic” in the other sense). Collin and Woodburn (1998)
similarly refer to the possibility of “a model in which the in-
corporated detail is too complex . . . for it to contribute any-
thing to the understanding of the system” (pp. 15–16). The
relevance of a model to biology, and the detail it includes,
are separable issues which should not be conflated under
the single term “realism.”

3.2. Level

What are the base units of the model?

This dimension concerns the hierarchy of physical/pro-
cessing levels that a given biological model could attempt

to represent. Any hypothesis will usually have “elemental
units” whose “internal structure does not exist or can be ig-
nored” (Haefner 1996, p. 4). In biology these can range
from the lowest known mechanisms such as the physics of
chemical interactions through molecular and channel prop-
erties, membrane dynamics, compartmental properties,
synaptic and neural properties, networks and maps, sys-
tems, brains and bodies, perceptual and cognitive pro-
cesses, up to social and population processes (Shepherd
1990). The level modelled in biorobotics usually includes
mechanisms of sensory transduction, for example the sonar
sensors of bats (Kuc 1997) including the pinnae movements
(Peremans et al. 1998), or of motor control, such as the six
legs of the stick insect (Pfeiffer et al. 1995) or the multi-
jointed body of the snake (Hirose 1993). The central pro-
cessing can vary from a rule-based level through high level
models of brain function such as the control of eye move-
ments (Schall & Hanes 1998), to models of specific neuron
connectivity hypothesised to underlie the behaviour, such
as identified neural circuitry in the cricket (Webb & Scutt
2000), and even the level of dendritic tree structure that ex-
plains the output of particular neurons such as the “loom-
ing” detector found in the locust and modelled on a robot
by Blanchard et al. (1999). The data for the model may
come from psychophysics (e.g., Clark’s 1998 model of sac-
cades), developmental psychology (Scassellati 1998), or
evolutionary studies (Kortmann & Hallam 1999), but most
commonly comes from neuroethological investigations.

This notion of level corresponds to what Churchland and
Sejnowski (1988) call “levels of organisation” and, as they
note, this does not map onto Marr’s well-known discussion
of “levels of analysis” (Marr 1982). Marr’s discussion of lev-
els (computational, algorithmic, and implementational) ap-
plies rather to any explanation across several levels of or-
ganisation, and describes how one level (be that network,
neuron, or channel) considered as an algorithm relates to
the levels above (computation) and below (implementa-
tion). In fact, this point was made clearly by Feibleman
(1954): “For any organisation, at any given level, its mech-
anism lies at the level below and its purpose at the level
above” (p. 61).

One source of the conflict over the “correct level” for 
biological modelling may be that levels in biology are rela-
tively close in spatio-temporal scale, as contrasted with
macro and micro levels in physics by Spriet and Van-
steenkiste (1982). They point out that “determination of an
appropriate level is consequently less evident” (p. 46) in bi-
ological sciences. Thus, it is always easy to suggest to a mod-
eller that they should move down a level; whereas it is ob-
viously impractical to pursue the strategy of always working
at the lowest level. Koch (1990) makes the interesting point
that low-level details may be unimportant in analysing some
forms of collective neural computation, but may be critical
for others – the “correct level” may be problem specific,
and “which really are the levels relevant to explanation in
the nervous system is an empirical, not an a priori, ques-
tion” (Churchland et al. 1990, p. 52).

Another problem related to levels is the misconception
that the level of a model determines its biological relevance.
A model is not made to say more about biology just by in-
cluding lower-level mechanisms. For example, using a
mechanism at the “neural” level does not in itself make a
model realistic: most “neural network” controlled robots
have little to do with understanding biology (Zalzala & Mor-
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ris 1996). Moreover, including lower levels will generally
make the model more complex, which may result in its be-
ing intractable and/or incomprehensible. Levins (1993)
provides a useful example from ecological models: it is re-
alistic to include a variable for the influence of “nutrients”;
less realistic to include specific variables for “nitrogen” and
“oxygen” if, thereby, other nutrient effects are left out. It is
also important to distinguish level from accuracy (see be-
low) as it is quite possible to inaccurately represent any
level. Shimoyama et al. (1996) suggest that to “replicate
functionality and behaviour . . . not necessarily duplicate
their anatomy” in building robot models of animals is to be
“not completely faithful” (p. 8): but a model can “faithfully”
replicate function at different levels.

3.3. Generality

How many systems does the model target?

A more general model is defined as one that “applies to
more real-world [target] systems” (Orzack & Sober 1993,
p. 534). Some researchers in biorobotics appear sanguine
about the possibility of generality, for example, Ayers et al.
(1998) claim “locomotory and taxis behaviours of animals
are controlled by mechanisms that are conserved through-
out the animal kingdom” and thus their model of central
pattern generators is taken to be of high generality. Others
are less optimistic about general models. Hannaford et al.
(1995), regarding models of motor control with “broad” fo-
cus, opines “because of their broad scope, it is even more
difficult for these models to be tested against the uncon-
troversial facts or for them to predict the results of new re-
ductionist experiments.” This suggests that increasing gen-
erality decreases relevance, so it should be noted that,
strictly speaking, a model must be relevant to be general –
if it does not apply to any specific system, then how can it
apply to many systems (Onstad 1988)? But a model does not
have to be general to be relevant.

The obvious way to test if a model is general is to show
how well it succeeds in representing a variety of different
specific systems. For many models labelled “general” this
does not happen. When it is attempted, it usually requires
a large number of extra situation or task specific assump-
tions to actually get data from the model to compare to the
observed target. This is a common criticism of optimal for-
aging studies (Pierce & Ollanson 1987): that, provided
enough task specific assumptions are made, any specific
data can be made to fit the general model of optimality. A
similar critique can be made of “general” neural nets (Ver-
schure 1996) – a variety of tasks can be learned by a com-
mon architecture, but only if the input vectors are carefully
encoded in a task specific manner. Raaijmakers (1994)
makes a similar point for memory models in psychology and
pertinently asks – is this any better than building specific
models in the first place?

The most common confusion regarding generality is that
what is abstract will thereby be general. This can often be
found in writings about artificial life simulations, and Estes
(1975), for example, makes this claim for psychological mod-
els. Shannon (1975) talks about “the most abstract and
hence the most general models” (p. 10) and Haefner (1996)
suggests more detail necessarily results in less generality. Se-
jnowski et al. (1988) describe “simplifying models” as ab-
stracting from individual neurons and connectivity to po-

tentially provide “general findings” of significance for the
brain. Sometimes this argument is further conflated with
“levels,” for example, Wilson (1999) discusses how “compo-
nent neurons may be described at various levels of general-
ity” (p. 446) contrasting the “abstraction” of spike rates to
the “detail” of ionic currents – but an ionic current descrip-
tion is actually more general as it applies to both spiking and
nonspiking neurons. The membrane potential properties of
neurons are very general across biology but not particularly
abstract; whereas logical reasoning is quite abstract but not
very general across biological systems. Obviously some con-
cepts are both abstract and general – such as feedback – and
many concepts are neither. Moreover, precisely the opposite
claim, that is, that more detail makes models more general,
is made by some authors, for example, Black (1962), Orzack
and Sober (1993). The reasoning is that adding variables to
a model will increase its scope, because it now includes sys-
tems where those variables have an influence, whereas be-
fore it was limited to systems where they do not.

Grimm (1994) points out that insofar as generality ap-
pears to be lost when increasing detail, it may simply be be-
cause the systems being modelled are in fact unique, rather
than because of an inherent trade-off between these factors.
This raises the important issue that “generality has to be
found, it cannot simply be declared” (Weiner 1995, p. 155).
That is to say, the generality of a model depends on the true
nature of the target(s). If different animals function in dif-
ferent ways then trying to generalise over them won’t work
– you are left studying an empty set. Robertson (1989)
makes the same point with regard to neural networks
“[neural] circuits that are unique in their organisation and
operation demand unique models if such models are to be
useful” (p. 262); Taylor (1989) similarly argues for ecology
that simple models are “not shortcuts to ecological general-
ity.” Consequently, one strategy is to work instead on un-
derstanding specific systems, from which general mecha-
nisms, if they exist, will emerge (Arbib & Liaw 1995).
Biology has often found that the discovery and elucidation
of general mechanisms tends to come most effectively from
close exploration of well-chosen specific instantiations (Mik-
los 1993), such as the fruitfly genome or squid giant axon.

3.4. Abstraction

How many elements and processes from the target
are included in the model?

Abstraction concerns the number and complexity of mecha-
nisms included in the model; a more detailed model is less
abstract. The “brachiator” robot models studied by Saito and
Fukuda (1996) illustrate different points on this spectrum: an
early model was a simple two-link device, but in more recent
work they produce a nine-link, twelve degree-of-freedom ro-
bot body with its dimensions based on exact measurements
from a 7–8 year-old female simiang skeleton. “Abstraction”
is not just a measure of the simplicity/complexity of the
model however (Brooks & Tobias 1996) but is relative to the
complexity of the target. Thus a simple target might be rep-
resented by a simple, but not abstract, model, and a complex
model still be an abstraction of a very complex target.

Some degree of abstraction is bound to occur in most
model building. Indeed, it is sometimes taken as a defining
characteristic of modeling – “A model is something simple
made by the scientist to help them understand something
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complicated” (Segev 1992, p. 414). It is important to note
that abstraction is not directly related to the level of mod-
elling: a model of a cognitive process is not, of its nature,
more or less abstract than a model of channel properties.
The amount of abstraction depends on how the modeller
chooses to describe and represent the processes, not what
kind of processes they represent. Furthermore, the fact that
some models – such as biorobots – have a hardware
“medium” (see below) does not make them necessarily less
abstract than computer simulations. A simple pendulum
might be used as an abstract physical model for a leg,
whereas a symbolic model of the leg may include any
amount of anatomical detail. As Etienne (1998) notes, “Ro-
bots tend to simulate behaviour and the underlying neural
events on the basis of a simplified architecture and there-
fore less precisely than computers” (p. 286).

How much abstraction is considered appropriate seems
to largely reflect the “tastes” of the modeller: should biol-
ogy aim for simple, elegant models or closely detailed sys-
tem descriptions? Advocates of abstraction include May-
nard Smith (1974): “Should we not therefore put into the
model everything that we think might be important? . . .
construction of such complex models is a waste of time”
(p. 116); and Molenaar (1994): “[it is] precisely by sim-
plification and abstraction that models are most useful”
(p. 101). The latter gives as reasons for preferring more ab-
stract models that complex models are harder to imple-
ment, understand, replicate or communicate. An important
point is that they thereby become hard for reviewers to cri-
tique or check (e.g., Rexstad & Innis 1985 report a surpris-
ing number of basic errors in published models they were
attempting to reimplement to test simplification tech-
niques). Simpler models are easier to falsify, and reduce the
risk of mere data-fitting, by having fewer free parameters.
Their assumptions are more likely to be transparent. An-
other common argument for building a more abstract
model is to make the possibility of an analytical solution
more likely (e.g., the abstraction of neural “sprouting” pro-
posed by Elliot et al. 1996).

However, abstraction carries risks. The existence of an at-
tractive formalism might end up imposing its structure on
the problem so that alternative, possibly better, interpreta-
tions are missed. Segev (1992) argues that in modelling
neurons, we need to build complex detailed models to dis-
cover what are appropriate simplifications. Details ab-
stracted away might turn out to actually be critical to un-
derstanding the system. As Kaplan (1964) notes, the issue
is often not just “over-simplification” per se, but whether we
have “simplified in the wrong way” or, that “what was ne-
glected is something important for the purposes of that very
model” (p. 281). For explaining biological behaviour, ab-
stracting away from the real problems of sensorimotor in-
teraction with the world is argued, within biorobotics, to be
an example of the latter kind: in this case, abstraction re-
duces relevance because the real biological problem is not
being addressed.

3.5. Structural accuracy

Is the model a true representation of the target?

Accuracy is here intended to mean how well the mecha-
nisms in the model reflect the real mechanisms in the tar-
get. This is what Zeigler calls structural validity: “if it not

only produces the observed real system behaviour but truly
reflects the way in which the real system operates to pro-
duce this behaviour” (1976, p. 5) as distinct from replicative
and predictive validity, that is, how well the input/output
behaviour of the system matches the target.7 This notion
has also been dubbed “strong equivalence” (Fodor 1968).
Brooks and Tobias (1996) call this the “credibility” of the
model, and Frijda (1967) suggests “[input/output] perfor-
mance as such is not as important as convincing the reader
that the reasons for this performance are plausible” (p. 62).
Thus, Hannaford et al. (1995) lay out their aims in building
a robot replica of the human arm as follows: “Although it is
impossible to achieve complete accuracy, we attempt to
base every specification of the system’s function and per-
formance on uncontroversial physiological data.”

One major issue concerning the accuracy of a model is
“how can we know?” (this is also yet another meaning of “re-
alism”). The anti-realist interpretation of science says that
we cannot know. The fact that certain theories appear to
work as explanations is not evidence to accept that they rep-
resent reality, because the history of science has shown us
to be wrong before (the “pessimistic meta-induction,” Lau-
dan 1981). On the other hand, if they do not approximately
represent reality then how can we build complex devices
that actually work based on those theoretical assumptions
(the “no miracle argument,” Putnam 1975)? Not wishing to
enter this thorny territory, it will suffice for current pur-
poses to argue for no more than an instrumentalist position.
If we can’t justifiably believe our models, we can justifiably
use them (Van Fraassen 1980). Accuracy in a model means
there is “acceptable justification for scientific content of the
model” (Rykiel 1996, p. 234) relative to the contemporary
scientific context in which it is built; and that it is rational
(Cartwright 1983) to attempt “experimental verification of
internal mechanisms” (Reeke & Sporns 1993, p. 599) sug-
gested by the model.

Inaccuracies in models should affect our confidence in
using the model to make inferences about the workings of
the real system (Rykiel 1996), but do not rule out all infer-
ence, provided “assumptions . . . [are] made explicit so that
the researcher can determine in what direction they falsify
the problem situation and by how much” (Ackoff 1962,
p. 109). Horiuchi and Koch (1999) make this point for neu-
romorphic electronics: “By understanding the similarities
and differences . . . and by utilising them carefully, it is pos-
sible to maintain the relevance of these circuits for biolog-
ical modelling” (p. 243). Thus, accuracy can be distin-
guished from relevance. It is possible for a model to address
“real” biological questions without utilising accurate mech-
anisms. Many mathematical models in evolutionary theory
fit this description. Dror and Gallogly (1999) describe how
“computational investigations that are completely divorced,
in practice and theory, from any aspect of the nervous 
system . . . can still be relevant and contribute to under-
standing the biological system” (p. 174), for example, as de-
scribed by Dennett (1984) to “clarify, sharpen [and] sys-
tematise the purely semantic level characterisation”
(p. 203) of the problem to be solved.

Accuracy is not synonymous with “amount of detail” in-
cluded in the model. This is well described by Schenk
(1996) in the context of “tree” modelling. He notes that re-
searchers often assume that a model with lots of complex
detail is accurate, without actually checking that the details
are correct. Or, a particular simplification may be widely
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used, and justified as a necessary abstraction, without look-
ing at alternatives that may be just as abstract but more ac-
curate. Similarly, it has already been noted that accuracy
does not relate directly to the level of the representation –
a high-level model might be an accurate representation of
a cognitive process where a low-level model may turn out
to be not accurate to brain biology.

A widely used term that overlaps with both “relevance”
and “accuracy” is “biological plausibility.” This can be taken
simply to mean the model is applicable to some real bio-
logical system; or used to describe whether the assumptions
on which the model are based are biologically accurate.
More weakly, it is sometimes used to mean that the model
“does not require biologically unrealistic computations”
(Rucci et al. 1999, p. 96). In fact, this latter usage is proba-
bly a better interpretation of “plausible,” that is, it describes
models where the mechanism merely could be like the bi-
ology, rather than those where there are stronger reasons to
say the mechanism is like the biology – the latter is “bio-
logical accuracy,” and neither is a pre-requisite for “biolog-
ical relevance” in a model.

3.6. Match

To what extent does the model behave like the target?

This dimension describes how the model’s performance is
assessed. In one sense it concerns testability: can we poten-
tially falsify the model by comparing its behaviour to the tar-
get? For example, the possibility that the lobster uses in-
stantaneous differences in concentration gradients between
its two antennules to do chemotaxis was ruled out by testing
a robot implementation of this algorithm in the real lobster’s
flow-tank (Grasso et al. 2000). However, assessment of a
biorobot may be simply in terms of its capabilities rather
than directly relate back to biology. While a significant role
for robot models is the opportunity to compare different
control schemes for their success (e.g., Ferrell 1995 looks at
three different controllers, two derived from biology, for six-
legged walking) simply reporting what will work best on a
(possibly inaccurate) robot model does not necessarily allow
us to draw conclusions about the target animal behaviour.

When a direct comparison with biology is attempted,
there is still much variability on this dimension regarding
the nature of the possible match between the behaviours.
Should the behaviours be indistinguishable or merely sim-
ilar? Are informal, expert, or systematic statistical investi-
gations to be used as criteria for assessing similarity? Is a
qualitative or quantitative match expected? Can the model
both reproduce past data and predict future data? Some
modelling studies provide little more than statements that,
for example, “the overall behaviour looked quite similar to
that of a real moth” (Kuwana et al. 1995, p. 375). Others
make more direct assessment, for example, Harrison and
Koch (1999) have tested their analog VLSI optomotor sys-
tem in the real fly’s flight simulator and “repeated an ex-
periment often performed on flies,” showing, for example,
that the transient oscillations observed in the fly emerge
naturally from inherent time-delays in the processing on
the chip. Even where biological understanding is not the
main aim of the study, it is possible that “animals provide a
benchmark” for evaluating the robot system, such as Berke-
meier and Desai’s (1996) comparison of their “biologically-

styled” leg design to the hind limb of a cat at the level of
force and stiffness parameters.

There are inevitable difficulties in drawing strong con-
clusions about biological systems from the results of robot
models. As with any model, the performance of similar be-
haviour is never sufficient to prove the similarity of mech-
anisms – this is the problem of underdetermination. Some
authors are concerned to stress that behavioural match is
never sufficient evidence for drawing conclusions about 
the accuracy or relevance of a model (e.g., Deakin 1990;
Oreskes et al. 1994). Uttal (1990) goes so far as to say that
“no formal model is verifiable, validatable or even testable
with regard to internal mechanisms” and claims this is “gen-
erally accepted throughout other areas of science.” But the
widespread use of models in exactly the way so deplored
suggests that most modelers think a reasonable defence for
the practice can be made in terms of falsification or coinci-
dence. If the model does not match the target then we can
reject the hypothesis that led to the model or at least know
we need to improve our model. If it does match the target,
better than any alternatives, then the hypothesis is sup-
ported to the extent that we think it unlikely that such sim-
ilar behaviour could result from completely different
causes. This is sometimes more formally justified by refer-
ence to Bayes’ theorem (Salmon 1996).

However, there are some limitations to this defence. Car-
rying out the comparison of model and target behaviours
can be a sufficiently complex process so that neither of the
above points apply. First, how can we be sure that the mea-
surements on the real system are correct? If the model does
not match we may reject the measurements rather than the
model. Second, an interpretation process is required to
convert the behaviour of the model and target into compa-
rable form. This interpretation process may be wrong, or
more worryingly, may be adjusted until the “match” comes
out right – “interpretive steps may inadvertently contain
key elements of the mechanism” (Reeke & Sporns 1993,
p. 598). Third, it is not uncommon for models to have their
parameters “tuned” to improve the match. As Hopkins and
Leipold 1(996) demonstrate, this practice can in fact con-
ceal substantial errors in the model equations or in the data.
Finally, Bower and Koch (1992) provide a sobering view of
the likelihood of a model being rejected on the basis of fail-
ure to match experiments:

experiments needed to prove or disprove a model require a
multi-year dedicated effort on the part of the experimental-
ist . . . falsification of any one such model through an experi-
mentum crucis can be easily countered by the introduction of
an additional ad hoc hypothesis or by a slight modification of
the original model. Thus the benefit, that is, the increase in
knowledge, derived from carrying out such time- and labour-
intensive experiments is slight. (p. 459)

3.7. Medium

What is the simulation built from?

Hypotheses can be instantiated as models in various differ-
ent forms, and hardware implementation is one of the most
striking features of biorobotics compared to other biologi-
cal models. Doucet and Sloep (1992) list “mechanical,”
“electric,” “hydraulic,” “scale,” “map,” “animal,” “game,”
and “program” as different forms a model might take. A
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popular taxonomy is “iconic,” “analog,” and “symbolic”
models (e.g., Black 1962; Chan & Tidwell 1993; Kroes 1989;
Schultz & Sullivan 1972), but the definitions of these terms
do not stand up to close scrutiny. “Iconic” originally derives
from “representation,” meaning something used to stand in
for something else, and is used that way by some authors
(Harre 1970b; Suppe 1977) to mean any kind of analogy-
based model. However, it is now often defined specifically
as using “another instance of the target type” (Chan & Tid-
well 1993), or “represent the properties by the same prop-
erties with a change of scale” (Schultz & Sullivan 1972, p. 6).
One might assume this meant identity of materials for the
model and the target, as discussed below, but the most cited
example is Watson and Crick’s scale model of DNA, which
was built of metal, not deoxyribonucleic acid. Yet “analog”
models are then distinguished from “iconic” as models that
introduce a “change of medium” (Black 1962) to stand in for
the properties. A popular example of an analog model is the
use of electrical circuit models of mechanical systems. Some
authors include computer models as analogs, for example,
Achinstein (1968) whereas others insist they are symbolic,
for example, Lambert and Brittan (1992). But whether the
properties are shared or analogous or “merely” symbolically
represented depends entirely on how the properties are de-
fined: whether the “essence” of a brain is its chemical con-
stitution, its connectivity pattern or its ability to process
symbols depends on what you are trying to explain. All mod-
els are “iconic,” or share properties, precisely from the point
of view that makes the model usefully stand in for the tar-
get for a particular purpose (Durbin 1989 calls this “the
analogy level”). Hence, I will abandon this distinction and
consider the medium more literally as what the model is ac-
tually built from.

A model can be constructed from the same materials as
its target. Bulloch and Syed (1992) describe “culture mod-
els,” that is, the reconstruction of simplified networks of
real neurons in vitro as models of networks in vivo; and Mik-
los (1993) argues for the use of transgenic techniques to
“build novel biological machines to test our hypotheses”
(p. 843). Kuwana et al. (1995) use actual biological sensors
– the antennae of moths – on their robot model and note
these are 10,000 times more sensitive than available gas
sensors. In these cases the representation of the target
properties is by identity in the model properties.

However, most models are not constructed from the
same materials. They may share some physical properties
with their targets, for example, a vision chip and an eye both
process real photons. Gas sensing is substituted for
pheromone sensing in Ishida et al.’s (1999) robot model of
the moth, but they replicate other physical features of the
sensor, for example, the way that the moths wings act as a
fan to draw air over the sensors. Models may use similar
physical properties. This may mean that the properties can
be described by the same mathematics, for example, the
subthreshold transistor physics used in neuromorphic de-
sign are said to be equivalent to neuron membrane chan-
nel physics (Etienne-Cummings et al. 1998). Or it may be
a “looser” mapping. The robot model of chemotaxis in
Caenorhabolitis Elegans (Morse et al. 1998) uses a light
source as an analog for a chemical gradient in a petri dish,
while preserving a similar sensor layout and sensitivity.
Models may also use quite different properties to stand in
for the properties specified in the target, for example, a

number in the computer processor labelled “activity” to
represent the firing rate of a neuron, or the use of different
coloured blocks in a robot arena to represent “food” and
“mates.”

In fact, nearly all models use all these modes of repre-
sentation to various extents in creating correspondences to
the hypothesised target variables. Thus “symbolic” com-
puter simulations frequently use time to represent time
(Schultz & Sullivan 1972); “iconic” scale models tend to use
materials of analogous rigidity rather than the same mate-
rials; mathematical models can be treated as a short-hand
for building a physically “analogous” system. Rather than
sharply contrasting “kinds” of models, what is of relevance
are the constraints the medium imposes on the operation
of the model. What makes a representation more “sym-
bolic” is that the medium is more arbitrary or neutral with
respect to representing the target properties. Symbols rest
on “arbitrary conventions – no likeness or unlikeness it may
bear to a its subject matter counts as a reason why it is a
symbol for, or of, a” (Harre 1970, p. 38). More “physical”
models are chosen because the medium has some pre-
existing resemblance to the properties we wish to repre-
sent, such as the use of analog VLSI to implement neural
processing (Mead 1989). The medium may contribute di-
rectly to the accuracy and relevance of the model, or sim-
ply make it easier to implement, run or evaluate as de-
scribed by Quinn and Espenscheid (1993):

Even in the most exhaustive [computer] simulations some po-
tentially important effects may be neglected, overlooked or im-
properly modelled. It is often not reasonable to attempt to ac-
count for the complexity and unpredictability of the real world.
Hence implementation in hardware is often a more straight-
forward and accurate approach for rigorously testing models of
nervous systems. (p. 380)

Doucet and Sloep (1992) point out “the way physical
models operate is, as it were, ruled by nature itself – rules
for functioning of conceptual [symbolic] models – we make
ourselves” (p. 281). Symbolic models may implicitly rely on 
levels of precision in processing that are unlikely to be pos-
sible to real systems. Computer programs can represent 
a wider range of possible situations than we can physical-
ly model, but physical models cannot break the laws of
physics.

4. The position of biorobotics

In section 2.4, I discussed in what sense biorobots can be
considered biological models – in particular, how robots
can be used as physical simulations of organisms, to test hy-
potheses about the control of behaviour. How, then, does
biorobotics differ from other modelling approaches in biol-
ogy? If it is suggested that “the use of a robot ensures the
realism” (Burgess et al. 1997, p. 1535) of a model, does this
mean making the model more relevant for biology, making
it more detailed, making it more accurate, making it more
specific (or general?), making it a “low-level” model, mak-
ing the performance more lifelike, or just that the model is
operating with “real” input and output?

In this section, I will use the framework developed above
to clarify how biorobotics differs, on various dimensions,
from other kinds of biological models. I will also advance
arguments for why the resulting position of biorobots in
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modelling “space” is a good one for addressing some 
fundamental questions in explaining biological behaviour. I
do not intend to suggest that it is the only correct approach
– “there is no unique or correct model” (Fowler 1997, 
p. 8) of a system. However “there are good and bad mod-
els” relative to the purposes of the model builder. Thus, this
discussion will also illustrate for what purposes in under-
standing biology, biorobotics appears to have particular
strengths.

4.1. Relevance to biology

A notable feature that distinguishes recent biorobotic re-
search from earlier biologically-inspired approaches in ro-
botics (such as the “behaviour-based” approach articulated
by Brooks 1986 and Arkin 1998) is the increased concern as
to whether and how the robot actually resembles some
specified biological target. Thus, most of the robot studies
listed in Table 1 cite the relevant biological literature that
has guided decisions on what to build, how to build it, and
how to assess it; frequently a biological investigator has ini-
tiated or collaborated directly in the research. The likeli-
hood of being able to apply the results back to biology is
thus increased, even where this was not the primary aim in
the initial robot construction. Biorobotics has been able to
confirm, develop, and refute theories in several areas of bi-
ology, as already described in a number of examples above.

A distinction was drawn in previous sections between us-
ing biorobots as biological models and using them for engi-
neering, and it is sometimes argued that these are incom-
patible, or at least orthogonal, concerns (e.g., Hallam 1998;
Pfeifer 1996). Nevertheless, many of those working in
biorobotics claim to be doing both. For example, Hirose et
al. (1996) include as “biorobotics” both “build[ing] robots
that emulate biological creatures” and “us[ing] develop-
ment of robots to understand biological and ethological
concepts” (p. 95). Espenschied et al. (1996), in describing
their work on robot models of insect walking, claim that “re-
sults that demonstrate the value of basing robot control on
principles derived from biology . . . also . . . provide insight
into the mechanisms of locomotion in animals and humans”
(p. 64). Lambrinos et al. (1997), regarding their robot
model of desert ant navigation, suggest: “On the one hand,
the results obtained . . . provide support for the underlying
biological models. On the other hand . . . computationally
cheap navigation methods for mobile robots are derived.”
Raibert (1986), in discussing methods for legged locomo-
tion, points out: “In solving problems for the machine, we
generate a set of plausible algorithms for the biological sys-
tem. In observing the biological behaviour, we explore
plausible behaviours for the machine” (p. 195).

Indeed, even where the explicit aim in building the ro-
bot model is said to be just “engineering” or just “biology,”
the process is very likely to involve both. It is the engineer-
ing requirement of making something that actually works
that creates much of the hypothesis testing power of robotic
models of biological systems. This is well described by Rai-
bert (1986):

To the extent that an animal and a machine perform similar lo-
comotion tasks, their control systems and mechanical structure
must solve similar problems. By building machines we can get
new insights into these problem, and we can learn about possi-
ble solutions. Of particular value is the rigor required to build
physical machines that actually work. (p. 3)

In the other direction, building a robot “inspired” by an
animal source presupposes a certain degree of knowledge
about that source. If, as Ayers et al. (1998) claim, “biologi-
cally-based reverse engineering is the most effective pro-
cedure” to design robots, then we need to understand the
biology to build the robots – in Ayers’ case this has involved
exhaustive analysis of the underlying “units” of action in the
locomotion behaviour of the lobster. That is, our goal is, as
defined by Shimoyama et al. (1996), “to understand activa-
tion and sensing of biological systems so that we can build
equivalents” (p. 8) or, as Leoni et al. (1998) put it, “a proper
comprehension of human biological structures and cogni-
tive behaviour . . . is fundamental to design and develop a
[humanoid] robot system” (p. 2274). The robot designer’s
motives thus overlap substantially with those of the biolo-
gist.

4.2. Level

It is sometimes argued in biorobotics that this methodology
should focus on lower levels, or working from “bottom-up.”
In fact, Taddeucci and Dario (1998) describe explicitly, in
the context of models of eye-hand control, what most bioro-
botics researchers do implicitly, that is, work both top-down
and bottom-up on the problems. The possible influence of
lower level factors is kept in mind, and the exploration of
the interaction of levels is engaged in. While this is perhaps
true of many other modelling approaches, robotic imple-
mentation specifically supports the consideration and in-
tegration of different levels of explanation because of its
emphasis on requiring a complete, behaving system as 
the outcome of the model. For example, Hannaford et al.
(1995) primarily consider their robot arm as a “mechanism
or platform with which to integrate information,” particu-
larly the interaction of morphology and neural control.
Thus, the context of the behaviour of the organism is always
included in a robot model, counteracting the tendency in
biological studies to lose sight of this context in close study
of small parts of the underlying mechanisms.

The level of mechanism modelled by the robot will re-
flect the level of information currently available from biol-
ogy. Interest in a particular level of explanation (such as sin-
gle neuron properties) may bias the choice of target system,
for example, towards invertebrate systems in which identi-
fied neurons have been mapped (Franceschini 1996). On
the other hand, interest in a particular target may deter-
mine the level at which an accurate model can be at-
tempted. For example, Etienne (1998) reviews the behav-
ioural and physiological data on mammalian navigation and
concludes that lack of information about the actual interac-
tions of the neural systems “leaves the field wide open to
speculative modelling” (p. 283) at the level of networks.

In addition, biorobotic systems emphasise the “physical”
level in the performance of sensing and action. That is, the
dynamics of the physical interaction of the robot/animal
and its environment are seen to be as critical in explaining
its behaviour as the processing or neural connectivity (Chiel
& Beer 1997). It is often found that engaging closely in
modelling the periphery simplifies central or higher level
processing. For example, Mura and Shimoyama (1998)
note that copying the circuitry of insect visual sensors
“closely integrates sensing and early stage processing” to
“ease off decision making at a higher processing level”
(p. 1859), and Kubow and Full (1999) discuss the extent to
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which running control is actually done by the mechanical
characteristics of the cockroach’s legs. Some of the most in-
teresting results from biorobotic modelling demonstrate
that surprisingly simple control hypotheses can suffice to
explain apparently complex behaviours when placed in ap-
propriate interaction with the environment. Examples in-
clude the use of particular optical motion cues to achieve
obstacle avoidance that slows down the robot in cluttered
environments without explicit distance cues being calcu-
lated (Franceschini et al. 1992), the “choice” between
sound sources with different temporal patterns resulting
from a simple four-neuron circuit in the robot cricket
(Webb & Scutt 2000), and the use of limb linkage through
real world task constraints to synchronise arm control (Wil-
liamson 1998).

4.3. Generality

In engineering, robots built for specific tasks have to date
been more successful than “general purpose” ones. Simi-
larly, in biorobotics the most successful results to date have
been in the context of modelling specific systems – partic-
ular competencies of particular animals. There is some
doubt whether modelling “general” animal competencies
(e.g., by simulating “hypothetical” animals such as Pfeifer’s
[1996] “fungus eater” or Bertin and van de Grind’s [1996]
“paddler”) will tell us much about any real biological sys-
tem. Without regrounding the generalisations by demon-
strating the applicability of the results to some specific real
examples, the problem modelled may end up being “bio-
logical” only in the terminology used to describe it.

An example of the tendency to more specificity is the
shift in research described by Nelson and Quinn (1998)
from generic six-legged walkers (Espenscheid et al. 1996)
to a robot that closely copies the anatomy and mechanics of
the cockroach. As they explain, the desired movement ca-
pabilities for the robot – fast running and climbing abilities
– depend on quite specific properties such as the different
functions of the rear, middle, and front pair of legs. Hence,
the specific morphology has to be built into the robot if it is
to be able to exploit features such as the propulsive power
of the rear legs and the additional degrees of freedom in the
front legs that enable the cockroach to climb.

If important factors in understanding behaviour lie in the
specific sensorimotor interface, then it is necessary to
model specific systems in sufficient detail to encompass
this. “Generalising” a sensorimotor problem can result in
changing the nature of the problem to be solved. What is
lost are the properties described by Wehner (1987) as
“matched filters,” the specific fit of sensor (or motor) mech-
anisms to the task. The sound localisation of crickets is a
good illustration. Crickets have a unique auditory system in
which the two ears are connected by a tracheal tube to form
a pressure difference receiver. This gives them good direc-
tionality but only for a specific frequency – that of the call-
ing song they need to localise. Copying this mechanism in
a robot model, it was possible to demonstrate that this fac-
tor alone can suffice to reproduce the cricket’s ability to re-
spond only to songs with the carrier frequency of con-
specifics (Lund et al. 1997).

Note that while “matched filters” are by their nature spe-
cific to particular animals, the concept is a general one. Sim-
ilarly, while the neural circuitry modelled in the cricket ro-
bot is highly specific to the task (and hence very efficient),

the idea it uses of exploiting timing properties of neural fir-
ing is a general one. Thus we can see general principles
emerging from the modelling of specific systems. More-
over, the “engineering” aspect of biorobotics enhances the
likelihood of discovering such generalities as it attempts to
transfer or apply mechanisms from biology to another field,
the control of man-made devices.

4.4. Abstraction

It might be assumed that the aims discussed so far of in-
creasing relevance by having a clearly identified target sys-
tem, and increasing specificity rather than trying to invent
general models, require that biorobotic models become
more detailed. Beer et al. (1997) suggest as a principal for
this approach “[generally to] err by including more biology
than appears necessary” (p. 33). However, others believe
that abstraction does not limit relevance, for example, ac-
cording to McGeer (1990) “it seems reasonable to suppose
that our relatively simple knee jointed model has much to
say about walking in nature” (p. 1643). Indeed, it has been
suggested that a key advantage of biorobotics is the discov-
ery of “simpler” solutions to problems in biology because it
takes an abstract rather than analytic approach (Meyer
1997). It is clear that some quite abstract robot representa-
tions have usefully tested some quite specific biological hy-
potheses. For example, there is minimal representation of
biological details in the physical architecture of Beckers et
al.’s (1996) robot “ants,” Burgess et al.’s (1997) “rat” or in-
deed the motor control of the robot “cricket” mentioned
above, but nevertheless, it was possible to demonstrate in-
teresting resemblance in the patterns of behaviour of the
robots and the animals, in a manner appropriate to testing
the hypotheses in question.

Rather than being less abstract, it might better be said
that biorobotics has adopted different abstractions from
simulations (or from standard robot control methods;
Bekey 1996; Pratt & Pratt 1998a). Robots are not less ab-
stract models just because they are physically implemented
– a two-wheeled robot is a simpler model of motor control
than a six-legged simulation. What does distinguish ab-
straction in biorobotics from simulations is that it usually
occurs by leaving out details, by substitution, or by simpli-
fying the representation, rather than by idealising the ob-
jects or functions to be performed. Thus, even two-wheeled
motor control has to cope with friction, bumps, gravity, and
so on; whereas a six-legged computer simulation may re-
strict itself to representing only the kinematic problems of
limb control and ignore the dynamics entirely.

Different aspects of the systems are often abstracted to
different degrees in biorobotics. Thus, models involving
quite complex sensors often use very simple two-wheeled
motor control rather than equally complex actuators. Edel-
man et al. (1992) describe relatively complex neural mod-
els but test them in rather abstract tasks. Though some 
robots are tested in quite complex environments, the ma-
jority have a simplified environment constructed for them
(though in some cases this is not much different from the
controlled environment used to test the animals). Pfeifer
(1996) and Cruse (2001) have made the point that this im-
balance in abstraction may itself lead to a loss of biological
relevance. What is needed is to ensure that the assumptions
involved in the abstraction are clear, and justified. A good
example is the description by Morse et al. (1998) of the sim-
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plifications they adopted in their robot model of chemotaxis
in C. elegans, such as the biological evidence for abstract-
ing the motor control as a constant propulsive force plus a
steering mechanism provided by contraction of opposing
muscles.

4.5. Accuracy

If “highest possible accuracy” was considered to be the aim
in biorobotics, then there are many ways in which existing
systems can be criticised. Most robot sensors and actuators
are not directly comparable to biological ones: they differ
in basic capability, precision, range, response times, and so
on. Binnard (1995) in the context of building a robot based
on some aspects of cockroach mechanics, suggests that 
the “tools and materials . . . are fundamentally different”
(p. 44), particularly in the realm of actuators. Ayers (1995)
more optimistically opines that “Sensors, controlling cir-
cuits and actuators can readily be designed which operate
on the same principles as their living analogs.” The truth is
probably somewhere in between these extremes. Often the
necessary data from biology is absent or not in a form that
can easily be translated into implementation (Delcomyn et
al. 1996). The process of making hypotheses sufficiently
precise for implementation often requires a number of as-
sumptions that go well beyond what is accurately known of
the biology. As for abstraction, there is also a potential prob-
lem in having a mismatch in the relative accuracy of differ-
ent parts of the system. For example, it is not clear how
much is learnt by using an arbitrary control system for a
highly accurate anatomical replica of an animal; or con-
versely, by applying a detailed neural model to control a ro-
bot carrying out a fundamentally different sensorimotor
task.

Biorobotics researchers are generally more concerned
with building a complete, but possibly rough or inaccurate
model, than with strict accuracy per se. That is, the aim is
to build a complete system that connects action and sens-
ing to achieve a task in an environment, even if this limits
the individual accuracy of particular parts of the model be-
cause of necessary substitutions, interpolations, and so on.
While greater accuracy is considered worth striving for, a
degree of approximation is considered a price worth paying
for the benefits of gaining a more integrated understanding
of the system and its context, in particular the “tight inter-
dependency between sensory and motor processing” (Pi-
chon et al. 1989, p. 52). This is exemplified in their robot
“fly” by the use of self movement to generate the visual in-
put required for navigation.

Projects that set out to build “fully accurate” models tend
not to get completed, and we can learn more from several
somewhat inaccurate models than from one incomplete
one. In several cases the accuracy has then been increased
iteratively, for example, the successive moves from a slower,
larger robot implementation of the cricket robot (Webb
1994; 1995), to a robot capable of processing sound at
cricket speed (Lund et al. 1998), and then to a controller
that more closely represents the cricket’s neural processing
(Webb & Scutt 2000). Indeed, Levins (1966) argues that
building multiple models is a useful strategy to compensate
for inevitable inaccuracies because results common to all
the models are “robust” with respect to the individual inac-
curacies of each.

4.6. Match

It should be admitted that the assessment of the behaviour
relative to the target is still weak in most studies in bioro-
botics. It is more common to find only relatively unsup-
ported statements that a robot “exhibited properties which
are consistent with experimental results relating to biolog-
ical control systems” (Leoni et al. 1998, p. 2279). One en-
couraging trend in the direction of more carefully assessing
the match is the attempt to repeat experiments with the
same stimuli for the robot and the animal. For example,
Touretsky and Saksida (1997) describe how they “apply our
model to a task commonly used to study working memory
in rats and monkeys – the delayed match to sample task”
(p. 219). Sharpe and Webb (1998) draw on data in ant
chemical trail-following behaviour for methods and critical
experiments to assess a robot model’s ability to follow sim-
ilar trails under similar condition variations, such as changes
in chemical concentration. Some behaviours lend them-
selves more easily than others to making comparisons – for
example, the fossilised worm trails reproduced in a robot
model by Prescott and Ibbotson (1997) provide a clear be-
havioural “record” to attempt to copy with the robot.

The accuracy of the robot model may impose its own lim-
its on the match. Lambrinos et al. (1997) note, when test-
ing their polarisation compass and landmark navigation ro-
bot in the Sahara environment, that despite the same
experimental conditions “it is difficult to compare the hom-
ing precision of these agents, since both their size and their
method of propulsion are completely different” (p. 200).
There is also the inherent problem in any modelling, that
reproducing the same behaviour is not proof that the same
underlying mechanism is being used by the robot and the
animal. There are some of ways in which the biorobotics ap-
proach can attempt to redress these limitations. By having
a specific target, usually chosen because there is substantial
existing data, more extensive comparisons can be made. Us-
ing a physical medium and more accurately representing
environmental constraints reduces the possibility that the
“world model” is being tuned to make the animal model
work, rather than the reverse. The interpretation of the be-
haviour is more direct. Voegtlin and Verschure (1999) ar-
gue, in their robot implementation of models of classical
conditioning, that by combining levels, and thus satisfying
constraints from “anatomy, physiology and behaviour” the
argument from match is strengthened.

Finally, biorobotic modelling has been instrumental in
driving the collection of further data from the animal.
Quinn and Ritzmann (1998) describe how building a cock-
roach-inspired robot has “required us to make detailed neu-
robiological and kinematic observations of cockroaches”
(p. 239). Correctly matching the behaviour is perhaps less
important then revealing what it is we need to know about
the animal to select between possible mechanisms demon-
strated in the robot.

4.7. Medium

The most distinctive feature of the biorobotics approach is
the use of hardware to model biological mechanisms. It is
also perhaps the most often questioned – what is learnt that
could not be as effectively examined by computer simula-
tion? One justification relates to the issue of building “com-
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plete” models discussed above – the necessity imposed by
physical implementation that all parts of the system func-
tion together and produce a real output. Hannaford et al.
(1995) argue that “Physical modelling as opposed to com-
puter simulation is used to enforce self consistency among
co-ordinate systems, units and kinematic constraints” in
their robot arm.

Another important consideration is that using identity in
parts of a model can sometimes increase accuracy at rela-
tively little cost. Using real water or air-borne plumes, or
real antennae sensors, saves effort in modelling and makes
validation more straightforward. Dean (1998) proposes that
by capturing the body and environmental constraints, ro-
bots provide a stronger “proof in principle” that a certain al-
gorithm will produce the right behaviour. In engineering,
demonstration of a real device is usually a more convincing
argument than simulated results. Thus one direction of cur-
rent efforts in biorobotics is the attempt to find materials
and processes that will support better models. Dario et al.
(1998) review sensors and actuators available for humanoid
robots. Kolacinski and Quinn (1998) discuss elastic storage
and compliance mechanisms for more muscle-like actua-
tors. Mojarrad and Shahinpoor (1997) describe polymeric
artificial muscles that replicate undulatory motions in wa-
ter, which they use to test theoretical models of animal
swimming. On a similar basis some researchers use dedi-
cated hardware for the entire control system (i.e., not a pro-
grammed microcontroller). Franceschini et al.’s (1992)
models of the fly motion detection system used to control
obstacle avoidance are developed as fully parallel, analog
electronic devices. Maris and Mahowald (1998) describe a
complete robot controller (including contrast sensitive
retina and motor spiking neurons) implemented in analog
VLSI.

Cited advantages of hardware implementations include
the ability to exploit true parallelism, and increased em-
phasis on the “pre-processing” done by physical factors
such as sensor layout. It is important to note, however, that
simply using a more “physical” medium does not reduce 
the need for “ensuring that the relevant physical properties
of the robot sufficiently match those of the animal relative 
to the biological question of interest” (Beer et al. 1998,
p. 777). Electronic hardware is not the same medium as
that used biology, and may lend itself to different imple-
mentations – a particular problem is that neural connectiv-
ity is three dimensional where electronic circuits are essen-
tially two-dimensional.

However, a more fundamental argument for using phys-
ical models is that an essential part of the problem of un-
derstanding behaviour is understanding the environmental
conditions under which it must be performed – the oppor-
tunities and constraints that it offers. If we simulate these
conditions, then we include only what we already assume to
be relevant, and moreover represent it in a way that is in-
evitably shaped by our assumptions about how the biologi-
cal mechanism works. Thus, our testing of that mechanism
is limited in a way that it is not if we use a real environment,
and the potential for further discovery of the actual nature
of the environment is lost. Thus, Beckers et al. (1996) sug-
gest “systems for the real world must be developed in the
real world, because the complexity of interactions available
for exploitation in the real world cannot be matched by 
any practical simulation environment” (p. 183). Flynn and

Brooks (1989) argue that “unless you design, build, experi-
ment and test in the real world in a tight loop, you can spend
a lot of time on the wrong problems” (p. 15).

5. Conclusions

It was by learning the inner workings of nature
that man became a builder of machines.

(Hoffer, cited by Arkin 1998, p. 31)

We’ve only rarely recognised any mechanical
device in an organism with which we weren’t

already familiar from engineering.
(Vogel 1999, p. 311)

Biorobotics, as the intersection of biology and robotics,
spans both views represented by the quotes above – under-
standing biology to build robots, and building robots to un-
derstand biology. It has been argued that robots can be “bi-
ological models” in several different senses. They can be
modelled on animals – the biology as a source of ideas when
attempting to build a robot of some target capability. They
can be models for animals – robotic technology or theory
as a source of explanatory mechanisms in biology. Or they
can be models of animals – robots as a simulation technol-
ogy to test hypotheses in biology. Work on this last kind of
“biorobot,” and the potential contribution it can make to bi-
ology, has been the main focus of discussion in this target
article.

To assess biorobotics in relation to other kinds of simula-
tions in biology, a multi-dimensional description of ap-
proaches to modelling has been proposed. Models can be
compared with respect to their relevance, the level of or-
ganisation represented, generality, abstraction, structural
accuracy, behavioural match, and the physical medium
used to build them. Though interrelated, these dimensions
are separable: models can be relevant without being accu-
rate, general without being abstract, match behaviour at
different levels, and so on. Thus, a decision with respect to
one dimension does not necessarily constrain a modeller
with respect to another.

I agree with Levins (1993) that a dimensional description
should not be primarily considered as a means of ranking
models as “better” or “worse” but rather as an elucidation
of potential strategies. The strategy of biorobots has here
been characterised as: increasing relevance and commit-
ment to really testing biological hypotheses; combining lev-
els; studying specific systems that might illustrate general
factors; abstracting by simplification rather than idealisa-
tion; aspiring to accuracy but concerned with building com-
plete systems; looking for a closer behavioural match; and
using real physical interaction as part of the medium. The
motivations for this strategy have been discussed in detail
above, but can be compactly summarised as the view that
biological behaviour needs to be studied in context, that is,
in terms of the real problems faced by real animals in real
environments.

Thus, the justification of the biorobotic approach is
grounded in a particular perspective on the issues that need
to be addressed. Different approaches to modelling will re-
flect differing views about the processes being modelled,
and the nature of the explanations required. One aim of this
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paper is to encourage other modellers to clarify their strate-
gies and the justification for them – even if it is only by dis-
agreement over the included dimensions. Indeed, different
views of “models” reflect different views of the “nature of
explanation,” as has been long discussed in the philosophy
of science. It has not been possible to pursue all these meta-
issues, some of which seem in any case to have little rele-
vance to everyday scientific use of simulation models. What
is critical is that the conclusions that can be drawn from a
model are only as good as the representation provided by
that model. In this respect, by working on real problems in
real environments, robots can make good models of real an-
imals.

NOTES
1. Suppe (1977) distinguishes this “representational” use of

“model” from “model” used in the mathematical sense of a se-
mantic interpretation of a set of axioms such that they are true.
There is not space in this article to discuss this model theoretic ap-
proach in the philosophy of science (Carnap 1966; Nagel 1961;
Suppe 1977), or the formal systems theoretic approach to models
developed by Zeigler (1976) and adopted in many subsequent
works (e.g., variants in Halfon 1983; Maki & Thompson 1973;
Spriet & Vansteenkiste 1982; Widman & Loparo 1989). These for-
mal/logical definitions are in any case not easy to apply to real ex-
amples of models in science where “Modelling is certainly an art,
involving a number of logical gaps” (Redhead 1980, p. 162).

2. Black (1962) suggests this generic usage of “model” is “a pre-
tentious substitute for theory” whereas Stogdill (1970) calls it “an
unpretentious name for a theory.”

3. Implementation is sometimes taken to mean actually repro-
ducing a real copy of the system (Harnad 1989), that is, replica-
tion; this is not intended here.

4. It should be acknowledged that there are several, fairly
widespread, definitions of simulation more restricted than the us-
age I have adopted here. First, there is the usage that contrasts it-
erative solutions for mathematical systems to analytical solutions
(Forrester 1972). Second, there is the emphasis on simulations be-
ing processes, that is, “dynamic” versus “static” models or an “op-
erating model . . . one that is itself a process” (Schultz & Sullivan
1972, p. 2). These distinctions have some validity, but I am going
to ignore them for convenience, as analytical and static models
stand in the same relationship to targets and hypotheses as itera-
tive or temporal ones. Third, is the usage of “simulation” to refer
to relatively detailed models of specific systems (e.g., of a partic-
ular species in certain niche) as opposed to more “general” mod-
els (e.g., of species propagation) which may also be implemented
on computers for iterative solutions (e.g., Levins 1993; Maynard
Smith 1974). Fourth, is the distinction of simulations as models
that only attempt to match input-output behaviour (e.g., Dreyfus
1979; Ringle 1979) as opposed to models that are supposed to
have the same internal mechanisms as their target. These latter
distinctions often carry the implication that “simulations” are used
for applications and “models” for science, that is, these distinc-
tions tend to be polemic rather than principled (Palladino 1991),
and they are certainly not clear-cut.

5. The term “source” is taken from Harre (1970b) who dis-
cusses this notion extensively. Unfortunately, the term “source” is
also occasionally used for what I have called the “target,” by some
authors.

6. “Biologically-inspired” robots can be criticised at times for
using “biological” as an excuse for not evaluating the mechanism
against other engineered solutions, while using “inspired” as a dis-
claimer for being required to show it applies to biology.

7. Some authors do use “accuracy” in the sense of “replicative
validity,” for example, Bhalla et al. (1992): “accuracy is defined as
the average normalized mean square difference between the sim-
ulator output and the reference curve” p. 453). The term “match”
is used instead in this article (see sect. 3.7).

Open Peer Commentary

Commentary submitted by the qualified professional readership of this
journal will be considered for publication in a later issue as Continuing
Commentary on this article. Integrative overviews and syntheses are es-
pecially encouraged.

Some robotic imitations of biological
movements can be counterproductive

Ramesh Balasubramaniam and Anatol G. Feldman
Research Center, Rehabilitation Institute of Montreal, University of Montreal,
Montreal, Quebec H3S 2J4, Canada. mahavishnu@sympatico.ca
Feldman@ere.umontreal.ca

Abstract: It is proposed here that Webb’s ideas about robots as possible
models of animals need some rethinking. In our view, even though widely
used biorobotics strategies are fairly successful at reproducing the macro-
scopic behavior of biological systems, there are still several problems un-
resolved on the side of robotics as well as biology. Both mathematical and
hardware-like robotics models should be feasible physiologically. Control
principles elaborated in robotics are not necessarily applied to biological
control systems. Although observations of flying birds inspired aerody-
namics and thus modern airplanes, little knowledge has been added to the
neurophysiological principles underlying flight in birds. Chess playing
computers might outperform most chess players, but they cannot be con-
sidered as physiologically feasible models of human thinking.

Barbara Webb presents a comprehensive report of issues in bioro-
botics with respect to relevance, level, generality, abstraction,
structural accuracy, performance match, and medium. We con-
tend that even if a robotic model of biology satisfies all of the
abovementioned constraints, there are still issues that can make
mechanical instantiations of biological behavior different from the
actual behavior of biological systems.

General purpose vs. special purpose systems. The author
draws inspiration from the idea that if an animal and a machine
perform the same behavior, their control systems and mechanical
structure must solve similar problems (Raibert, 1986). We believe
that this idea can be quite misleading. Consider the example of a
human arm. The human arm can be assembled to throw, to catch,
to reach, to grasp, move rhythmically, and so on. Each of these be-
haviors requires a different functional assembly of the arm, with
different activation of muscles and joints in a task specific way
(Feldman & Levin 1995). A robotic arm can be engineered to per-
form all these behaviors but all the contexts of constraint have to
be built into the system. Most conventional robots are general
purpose devices, in the sense that they use the same dynamical
regime for all types of tasks (e.g., spatial trajectory planning for the
terminal device and velocity servoing use the same device). A bi-
ological system, on the one hand, carries its own contexts of con-
straint (Turvey 1990). The generality of a biological system comes
from the fact that task-specific solutions are orchestrated by cap-
italizing on peculiarities of the task such as invariants, lawful reg-
ularities, and so on. Special purpose devices, on the other hand,
are softly-assembled devices that are put together functionally to
meet the demands of specific tasks (Greene 1975).

How much biology can we understand from machines? Webb
borrows from the ideas of Beckers et al. (1996) and Flynn and
Brooks (1989) that physical model systems for the real world must
be developed not in any practical simulation environment but by
exploiting the complexity of interactions available in the real world
itself. While we agree with this general contention, there are some
issues here that need to be resolved. The modern airplane was in-
spired by centuries of observations of bird flight. The physical
principles of flight in an airplane and a bird are quite similar. Both
the airplane and the bird take advantage of the same real world
physical principles of aerodynamics, such as Bernoulli’s principle,
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flow fields, and turbulence. Even if the structural accuracy of the
airplane to model target behavior (that of the bird) was developed
further – in the sense that if the airplane could flap its wings, land
with soft collisions, and so on, – it is unlikely that much more
would be identified about the neurophysiology or the behavioral
organizational principles of bird flight.

Even though the biorobotic control systems mentioned by
Webb are a significant improvement over the classic cybernetic
models, they still make assumptions similar to the cybernetic ap-
proach. To illustrate this, let us consider the example of the sim-
plest control system, the thermostat. Temperature regulation is
achieved in the thermostat by minimizing the difference between
the actual temperature of the room and that of the set point. The
set point is prescribed by an external source and is not specified
by the system itself. In contrast, biological control systems have
the capacity to internally modify the set points of different sub-
systems and thus intentionally initiate the transition from one
steady state to another, a dynamical process underlying voluntary
actions (Feldman & Levin 1995). For example, the human arm as
controlled by the nervous system can reach desired positions by
prescribing a set point, which is achieved by active engagement
with the environment, gravity, inertial, and reactive forces. Mus-
cle activation patterns, forces, torques, and trajectories are not
programmed or computed but are largely emergent in biological
systems in the process of interaction with the environment.
Whereas, even in the most sophisticated examples used by Webb,
such as modern robotic approaches called force control models
(Wolpert et al. 1998), these variables are directly programmed and
computed. The dynamical mechanism of state resetting is largely
ignored, simply because the computational principles underlying
imitations of biological movements in robotics conflict with the
natural, dynamical nature of the resetting mechanism underlying
intentional movements.

To emphasize this point, consider the posture-movement prob-
lem in biological control of movement as formulated by Von Holst
and Mittelstaedt (1950/1973). He noticed that there are powerful
neuromuscular mechanisms (“postural reflexes”) that generate
electromyographic (EMG) activity and forces in order to resist
perturbations that deflect the body from an initial posture. At the
same time, it is clear that the organism can intentionally adopt dif-
ferent postures. Each new posture adopted by the system might
be considered as a deflection from the initial one. The deflection
would result in resistance tending to return the system to its ini-
tial position. How then is an intentional movement from the ini-
tial posture and the achievement of a new posture of the body pos-
sible without resistance? It has been established that the nervous
system can reset the postural state by changing length-dimen-
sional parameters – muscle activation thresholds (Asatryan &
Feldman 1965; Feldman & Orlovksy 1972; Matthews 1959). By
resetting these thresholds, the system shifts the spatial coordinates
at which an equilibrium posture can be reached and maintained.
Thereby, the initial posture appears to be a deflection from the
newly specified posture. Therefore, the same neuromuscular
mechanisms that produce EMG signals and forces in response to
deflections from the initial position produce, without any pro-
gramming, EMG signals and forces tending to eliminate the de-
flection from the new posture and thus move the system to it
(Feldman & Levin 1995; St-Onge et al. 1997). This postural re-
setting mechanism was also confirmed by the finding that many
systems, including cortico-spinal descending ones, have the ca-
pacity to regulate the activation thresholds. Further support stems
from recent studies showing dramatic movement problems fol-
lowing deficits in the regulation of activation thresholds in neuro-
logical patients (Levin & Dimov 1997).

Stemming from robotics, force control models fail to answer the
basic question posed by Von Holst and Mittelstaedt (1950) on how
the system can actively move from an initial posture without trig-
gering resistance. By disregarding the empirical mechanism of
postural resetting (shifts in muscle activation thresholds), force
control models produce movements by overcoming such resis-

tance. For example, Schweighofer et al. (1998) simulated planar
point-to-point arm movements using a force control strategy.
Their equations show that after the movement offset, muscles
generate tonic activity in proportion to the distance between the
initial and the final muscle lengths. This implies that the final po-
sition is reached by overcoming the resistance to the deflection of
the arm from the initial position. Thereby, at the final position, the
muscle activity cannot be minimized without driving the limb back
to the initial position. This prediction of the force control strategy
obviously conflicts with the common observation that after transi-
tion of the arm to a new position, muscle activation can be mini-
mized without arm motion. Control strategies that tolerate the re-
sistance to deflections from the initial posture each time when an
active movement is produced are highly inefficient in terms of en-
ergy costs. Incorporating the empirically established mechanism
of postural resetting in a motor control theory comes with a price:
the resetting mechanism implies that output, mechanical variables
do not need to be directly programmed or computed to make ad-
equate actions. This implication conflicts with the basic, com-
putational principles underlying force control models and thus
questions their physiological feasibility, despite their efficiency in
robotics.

We conclude that while great strides have been made in bioro-
botics, there is still a long way to go before robotics can make per-
tinent contributions to biology. The contributions of biorobotics
to biology can be greatly accelerated if engineering approaches
take into account the context in which biological systems generate
solutions to real world problems.

From reflex to planning: Multimodal versatile
complex systems in biorobotics

Jean-Paul Banquet,a Philippe Gaussier,b Mathias Quoy,b

and Arnaud Revelb
aNeuroscience et Modélisation, INSERM 483, Université Pierre et Marie
Curie, 75252 Paris Cedex 5, France; bNeurocybernetics Group, ETIS Lab,
Université de Cergy-Pontoise, Cergy-Pontoise, 95014, France.
banquet@ccr.jussieu.fr {gaussier;quoy;revel}@ensea.fr
http ://www-etis.ensea.fr/~neurocyber

Abstract: As models of living beings acting in a real world biorobots un-
dergo an accelerated “philogenic” complexification. The first efficient ro-
bots performed simple animal behaviours (e.g., those of ants, crickets) and
later on isolated elementary behaviours of complex beings. The increasing
complexity of the tasks robots are dedicated to is matched by an increas-
ing complexity and versatility of the architectures now supporting condi-
tioning or even elementary planning.

The edge of biorobotics over plain mathematical modelling.
Robotic models result from a back-and-forth interaction between
mathematical models’ simulation in “gedanken” experiments, and
robotic models’ experiments in the real world. As such, they do
not constitute a different type of, but actually a step further to,
classical modelling.

From our experience of complex systems, a few points are em-
phasized. First, a complete behaving system, as in a robotic model,
requires a necessary “horizontal” mechanistic integration, at the
basic level of network interactions between different components
of the global architecture (sensory, motor, associative, timing,
planning, and so on), that enforces self-consistency among co-
ordinated systems (at variance with the “vertical” integration be-
tween different levels of explanation alluded to in the target arti-
cle). This “horizontal” integration is rarely achieved in network
modelling characterized by a tendency to build dedicated archi-
tectures for specific tasks without caring about their functional in-
tegration in a system. Less accuracy or some degree of approxi-
mation is the price to pay. The specific import of biorobotics in the
“vertical” integration has been to stress the interdependence be-
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tween agent morphology and control system, and to provide a test
of congruence between the model of the agent and the model of
its environment thanks to dynamic interactions with the external
world during robotic experiments.

Second, model-grounding in the real world by compliance with
physical laws (such as spatio-temporal continuity, gravity, and so
on) is a lever to the system’s simplification rather than a constraint.
Learning a real environment (during an individual lifespan or a
species’ evolutionary period) is paradoxically a source of simplifi-
cation in this type of solution and solution-space dimensionality.
Combinatorial explosion of the solution domain is prevented by
probabilistic sorting out of the situations actually encountered in
the real world. As illustrations from our model: (1) Assuming 
spatio-temporal continuity expressed by the formalism of neural
fields (Schoener et al. 1995) allows stable target selection and
smooth, robust control. (2) Control architectures can take advan-
tage of inherent perceptual ambiguity to perform complex tasks in
a simple way, with disambiguation resulting from the dynamics of
the behavior. (3) Sensory and motor modules designed in com-
patible or similar coordinate systems achieve a great simplification
of the information flows (Gaussier et al. 1999).

Third, two dimensions of neural organisation, relevant for hu-
mans as well as robots, account respectively for the nature of the
functions performed (e.g., spatio-temporal processing and navi-
gation, linguistic processing, episodic learning), and the level of
performance (reflex, conditioning, planning). The first horizontal
dimension specifies, according to combined perceptuo-motor
modalities, the nature of the parallel processes performed, what-
ever their level of performance. It depends on the combination 
of the multimodal associations (e.g., visual [exteroceptive] and
movement related [interoceptive] inputs in the computation of

space during navigation; auditory but also visual inputs in speech
and language processing; and so on). Each peculiar combination
of associations specifies a function. The second vertical dimension
specifies the level of performance (stimulus-response reflex be-
haviour, conditioned automatic behaviour, planned controlled 
behaviour), whatever the nature of the functions involved. This
second sequential, or rather, iterative aspect unfolds in cortico-
subcortical loops characterized by the dual process of conver-
gence-contraction and divergence-expansion of information, and
gives rise to different levels of pattern-recognition (uni- or multi-
modal events, transitions, chunks, sequences, plans).

Illustration by a generic spatio-temporal control system. De-
pending on these two dimensions, dedicated architectures can be-
come generic and, as such, used for multiple implementations ac-
cording to the input-output nature and the level of processing. We
assumed common mechanisms for spatio-temporal processing
during navigation and declarative-episodic memory. Both depend
on spatio-temporal sequence learning based on a cascade of asso-
ciations and pattern recognition performed in cortico-hippocam-
pal loops.

The computational model implemented as a robot control sys-
tem features three levels of organization (Fig. 1a) linked by in-
trahippocampal and cortico-hippocampal loops. First, a basic hip-
pocampal level learns events (whatever their nature, e.g., places),
transitions between events, and chunks. Second, the intermediate
level links sensory information to motor responses in relation with
drives and reinforcement. Finally, the cortical level links and
stores sequences of chunks to form graphs and maps that can be
used for planning in relation with goals and motivations. Accord-
ing to the nature of the input-output modalities, the system can be
used to learn timing and temporal sequences, motor sequences for
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Figure 1 (Banquet et al.). (a) Three-level generic architecture featuring hippocampus (EC, entorhinal cortex; DG, dentate gyrus; CA3-
CA1; SUB, subiculum), intermediate level of basal ganglia (ACC, accumbens), and cortex (PF, prefrontal). (b) Learning of places
(A,B,C,D,E), transitions, and associated trajectories while exploring an indoor environment. (c) Imitation and learning of the teacher
trajectories by a student.
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imitation, or temporo-spatial sequences for navigation (Banquet
et al. 2001).

In our model of timing and sequence learning, cell populations
with different time constants extend an event-related phasic sig-
nal for different delays (so learning the timing between two
events). The transition between two successive events, thus made
co-occurrent, is learned by a hetero-associative network (Banquet
et al. 1997; 1998). In one trial, event-transitions and temporal se-
quences are learned, as for a melody.

The same basic architecture, complemented with a sensori-
motor module that feedbacks proprioceptive inputs to the hip-
pocampal system performs protoimitations (Gaussier et al. 1998)
and learns arbitrary trajectories (Fig. 1c). The system, based on a
homeostasis principle, minimizes the difference between teacher-
movement perception and student movement. Structuring the
movements of the teacher in movement-transitions allows online
imitations and learning of the imitated sequences. A playful ver-
sion of this robot model (imitating vs. being imitated) is imple-
mented as an aid to understanding autistic behaviour whose main
handicap results from a deficit in social interactions (Andry et al.
2001).

The same architecture (Fig. 1a), when receiving visuo-spatial
inputs, learns not only transitions between places during the ex-
ploration of an environment, but also (thanks to path-integration)
the ideal trajectory between two places, and associates this trajec-
tory with the transition (Fig. 1b). Learning can either be latent
(Hebbian without reinforcement) or reinforced (higher order
conditioning) by a reward. Yet, transition-learning, combined with
the propagation along the graph of the activation initiated by goal
representation and motivation (Fig. 1a), allows discovering transi-
tions never experienced before, and managing several simulta-
neously active goals (Gaussier et al. 2001), according to their sa-
lience.

The biorobotic models certainly do not constitute a proof of the
existence of similar neurobiological mechanisms, but rather, a
guarantee of functional realism and plausibility, and a questioning
tool capable of suggesting unexpected hypotheses on biological
systems.

Models of complexity: The example 
of emotions

Catherine Belzunga and Catherine Chevalleyb

aEA 3248 Psychobiologie des émotions, UFR Sciences et Techniques,
Université F. Rabelais, Parc Grandmont, Tours F-37200, France;
bDépartement de Philosophie, Centre d’Etudes Supérieures de la
Renaissance, Université F. Rabelais, Tours F-37000, France.
Belzung@univ-tours.fr Chevalley@univ-tours.fr

Abstract: Using the example of the difficulties which emerge when trying
to model complex behaviors – such as emotional expression – that result
from stochastic interactions between different components, we argue that
biorobotics may well describe one possible evolution of certain features of
a biological system, but cannot pretend to be a simulation of the whole be-
havior of the system.

Robots are believed to mimic the behavior of biological systems,
but do they model complex behaviors, such as emotional expres-
sion? Several robots have been built that include the so-called
“emotional model.” For example, the AIBOT, which is a home en-
tertainment robot simulating a dog’s behavior, seems able to ex-
press “emotional behavior” (Pransky 2001), while human head-
like robots can communicate with humans by changing facial color
expression (Miwa et al. 2001a). The major reason for including
such abilities may be to advance the sociability of the robots; emo-
tional models facilitate communication between robots and hu-
mans (Miwa et al. 2001a) and machines carrying them are so much
more attractive (Ogata & Shigeki 2000). Other reasons for in-

cluding “emotional models” could be to facilitate adaptation to
natural and unpredictable environments (autonomy of the sys-
tem), and to improve cognitive processes. Indeed, it has been sug-
gested that emotions may be a process crucial for cognition
(Chevalley & Belzung 2001). In fact, there is substantial evidence
indicating that emotions may be mediators between low-level re-
active behaviors and high-level rational behaviors. What kind of
model do these “emotional systems” use? The human head-like
robots use the so-called “equation of emotion” (Miwa et al. 2001b)
which consists of the following process: (1) the robot senses the
stimulus (Miwa et al. 2001a); (2) the robot appraises the stimulus
according to three dimensions (pleasantness, activation level, cer-
tainty); (3) the robot generates a “mental state” using an equation
(called “the equation of emotions”) integrating the three dimen-
sions; (4) it loads the response, which can consist of a modification
of its facial color by using red EL (electroluminescent) sheets.
Other models are based upon the imitation of the human en-
docrine system to adjust various internal conditions such as motor
output or sensor gain (Ogata & Shigeki 2000).

So, the models used are based upon the production of a serial
linear process, occurring at the psychological or the physiological
levels. This is quite a simplistic modeling, because in biological
systems emotional expression may in fact result from complex in-
teractions between different causes, including ones related to the
natural history of the species (genetic factors) or to the events the
subject has been faced with (epigenetic factors), to psychological
states, to brain circuitry, neurotransmitter systems, and so on.
Each of these factors participates in the generation of emotions by
activating a complex set of parallel distributed processes (Cheval-
ley & Belzung 2001), which permanently interact with all the oth-
ers so as to yield an unpredictable response. Therefore, there may
be some elements of the behavior of biological models which can-
not be simulated in robots. Furthermore, it is rather probable that
even though robots may imitate some aspects of the emotional ex-
pression (such as changes in face color), they cannot have an emo-
tional feeling. This further emphasizes how impossible it is to
mimic emotional behavior.

The case of emotions well exhibits the difficulties we face when
attempting to model human behavior. But it also exhibits the am-
biguities of our conceptions of what modeling is. The method-
ological approach that was associated with modeling at the time of
a crisis in the fundamental concepts of Mechanics in the 1880s was
a very sophisticated one. Heinrich Hertz (1894/1956) was the first
to use the word “model” in connection with a new conception of
the “theory of knowledge” (see, notably, his definition of what is a
“dynamical model” in Bk. II, sect. 418), and this inspired people
as different as Boltzmann, Wittgenstein, Cassirer, Bohr, and
Heisenberg. Assuming that a model is a representation that is a
construct of the mind and may have no resemblance whatsoever
to the thing it represents, Hertz based his epistemology of the
Scheinbilder on the idea that the agreement between Mind and
Nature can be compared to the agreement between two systems
one of which is a model of the other. There must exist between the
two something like what Helmholtz (1878/1921) had called “par-
allelism in law-likeness”: namely, there must be a strict correla-
tion, not between the system modeled and its model, but between
the law of evolution of the system modeled and the law of evolu-
tion of the model. Among other motivations, such as introducing
“hidden masses” in the science of Mechanics, this was meant at
the time as an argument against all naïve “pre-Kantian” concep-
tions of knowledge based on the notion of a resemblance between
things and ideas, or between systems and their symbolic expres-
sion. To Hertz, the benefit of modeling was to allow us to focus
not on objects, but on law-likeness (Gesetzlichkeit).

From the beginning, then, a model was different from a simu-
lation. This is the background of Bohr’s claim that a representa-
tion of the atom could not in any way “look like” the planetary sys-
tem, while it should account for the discontinuities observed in
experimenting on radiation phenomena. Building a model is not
simulating a process, rather, it is building one possible interpreta-
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tion of the evolution of a set of data or any kind of observed be-
havior.

If that is the case, it follows that biorobotics may well describe
one possible evolution of such and such feature of a biological sys-
tem, but that it cannot pretend to be a simulation of the whole or
entire behavior of the system. To be slightly provocative, we might
note that, indeed, there exist excellent models of the behavior of
living beings, and notably of emotional behavior (love, avarice,
jealousy, and so on): these are the many theatre plays, poems, and
great novels that our literature has produced. In the same year,
Racine and Corneille both wrote the story of Berenice, thus
proposing two different modelings of the same predicament. In-
deed, in the sciences too, our understanding seems bound to
bounce from one representation to another, while renouncing the
fallacious hope to ever find the one true theory.

Biorobotics researcher: To be or not to be?

Carolina Chang
Departmento de Computación y Tecnología de la Información, Universidad
Simón Bolívar, Caracas, 1080, Venezuela. cchang@ldc.usb.ve
http ://www.ldc.usb.ve/~cchang

Abstract: Much confusion exists within the robotics and the biology com-
munities regarding the definition of biorobotics and the aims and strate-
gies that characterize this approach. Not even the basic criteria for identi-
fying biorobotic research are being applied consistently. Barbara Webb has
taken a crucial step towards setting a common ground from which bioro-
botic systems can be described, analyzed, and compared.

In having organized conference sessions on biorobotics, co-edited
a journal issue on biomimetic robotics (Chang & Gaudiano 2000),
and also in everyday teaching and research, I have come across
many diverse views about the biorobotics approach. On the one
hand, the approach is often misunderstood or attacked. On the
other hand, it is drawing an increasing interest from the robotics
community. At conferences and talks I have sensed a special 
interest and enthusiasm for this field, to the extent that some 
people seem to believe that a piece of research is “better” or “more
serious” if its author can claim that the work belongs to bioro-
botics.

Many researchers who focus on engineering and classical ro-
botics simply don’t understand what the goal of biorobotics is. This
may be because their robots achieve more striking results for the
time being. So, what would be the point of having, for example, a
robot with a model of the rat hippocampus, if such a robot can nav-
igate only in simple rectangular environments? By constructing
symbolic models of the environment and planning usage based on
these, AI researchers have built robots that, to some extent, can
navigate more complex indoors and outdoors environments. This
and other kinds of models have proven successful for robot navi-
gation tasks. This approach is fine as long as one is interested
mainly in getting the robot moving around. However, it will not be
useful if one is interested in generating testable hypotheses for bi-
ology. Of course, biological relevance isn’t and shouldn’t be the
aim of an engineered solution. When two pieces of research have
different goals, results are not directly comparable. Therefore, we
cannot say a priori whether a robot with a model of rat hip-
pocampus is better or worse than a robot with a symbolic model
of the environment. It all depends on what we are pursuing with
the model, which in turn determines what dimensions best de-
scribe it. Clearly, people will disagree on what the goals and the
important dimensions should be.

I have no problem with this type of disagreement. What really
puzzles me is finding work that claims to be based on a biorobotic
approach, but that, in my opinion and according to Webb’s article,
does not belong to this field.

Work that is not based on robots. I agree with Webb that sim-

ulations and sensing systems that do not end in actions are not ro-
botic systems. I don’t think, however, that most people share this
understanding of robotics. The need for physical robots has been
recognized for years in the behavior-based robotics approach
(Brooks 1991), and this principle has been the source of much de-
bate. Part of the problem here is due to the sometimes vague def-
inition of what constitutes a robot. I used to think that lay people,
especially kids, were doing better than some researchers at classi-
fying robotic from non-robotic systems. However, today the terms
“robot” and “bot” are being used widely, especially on the Inter-
net, to name software agents. Even ordinary people are beginning
to regard them as robots. In robotics, it is common to find re-
searchers who believe that simulated robots are robots. Biorobot-
ics should keep letting people know that it is devoted to physical
robotic systems.

Work that has no grounding in biology. Just because a given
robot has six legs, it is not a biorobotic insect. Similarly, even
though some robots learn by means of a neural network controller
or some sort of reinforcement learning mechanism, they are not
biorobots if they do not “address a biological hypothesis or demon-
strate understanding of a biological system” (target article, sect.
2.4). Unfortunately, the terms biorobotics and biologically-
inspired robotics have been used frequently to describe systems
that are only loosely related to biological systems. I tend to prefer
the term “biomimetic robotics,” because mimicry in a biological
sense implies a close resemblance, sometimes of one organism to
another of a different species (Wickler 1968). In our case, we
mean a close resemblance of a robot to a biological organism, at
the anatomical, physiological, functional or behavioral level. But
the term “biomimetic robotics” has had the same fate as the terms
“biorobotics” and “biologically-inspired robotics.” It doesn’t mat-
ter how we name this research area, the wrong usage of its name
will continue until its definition is stated clearly and broadly.

Finally, if the biorobotics approach is not well understood
within the robotics community, it is even more obscure for a large
part of the biology community. Some biologists are disappointed
by the minimal relevance of many so-called biologically-inspired
robots, others are concerned about the lack of scientific method-
ology in robotics research, and yet others are simply not aware or
not optimistic about the potential results of the intersection of bi-
ology and robotics.

We have been lacking a common ground from which the bioro-
botic approach could be described, analyzed, and discussed. In
this regard, Webb’s article stands as a very valuable contribution
to the field. I strongly believe that it will help us achieve a better
understanding of the biorobotics approach. I won’t argue whether
or not the seven dimensions that she has proposed are the best
choice for framing the approach. As I said before, I anticipate
some disagreement on the selection and description of these di-
mensions. What is really important is that Webb has plotted the
biorobotics approach very thoughtfully and very carefully along
the chosen dimensions. We can now locate our own research
within the context of a well-characterized approach.

Webb’s efforts to provide and promote a standard definition of
this field, and a metric by which to classify work, should be com-
mended. The continued careless, gratuitous use of terms such as
biorobotics or biomimetic robots only hurts this fascinating and
promising field of research by undermining its credibility.
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Programs, models, theories, and reality

Robert I. Damper
Department of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, United Kingdom.
rid@ecs.soton.ac.uk www.ecs.soton.ac.uk/~rid

Abstract: The question “Are ‘biorobots’ good models of biological behav-
iour?” can be seen as a specific instance of a more general question about
the relation between computer programs and models, between models
and theories, and between theories and reality. This commentary develops
a personal view of these relations, from an antirealism perspective. Pro-
grams, models, theories and reality are separate and distinct entities which
may converge in particular cases but should never be confused.

Webb asks: “Are ‘biorobots’ good models of biological behaviour?”
It seems her preferred answer – like that of other biorobotics
practitioners – is that they can be. (Why else go to all that bother?)
The difficulty is in justifying this answer in the face of proper
scientific scepticism. Webb’s review of the philosophy of science
literature on the relations between simulations, models, and the-
ories in general uncovers a degree of disagreement (if not down-
right confusion) which barely helps the quest for enlightenment.
Her solution is essentially pragmatic: She lists seven dimensions
on which robotic models can vary and uses these to prompt a set
of “acid tests.” Any particular model should, in some degree, pass
at least a subset of these if claims of usefulness are to be substan-
tiated. But robots are artificial computational devices irrespective
of whether there was a biological inspiration for their construction
or not. Hence, Webb’s question can be seen as a specific instance
of the more general question: “Can computer programs serve as
good models of real-world phenomena?” It is useful to reframe
things thus, since the latter version has been extensively argued.

It could be objected that a robot is more than a computer, and
a behaving robot is more than a computer program: One might not
normally think of a computer as mobile and autonomous. But with
increasing microminiaturisation and concomitant advances in
software engineering, computers are becoming ever more perva-
sive in a variety of mobile applications, often displaying a consid-
erable degree of autonomy of function. In any event, what are the
wheels and associated driving motors of a mobile robot but pe-
ripheral output devices, and what are its sensors but peripheral in-
put devices? Webb hints at this when she writes that the hardware

implementation of biorobots “does not necessarily make them less
abstract than computer simulations.” According to the cartoon be-
low, an amusing role-reversal play on the Turing test, robots and
computers are certainly synonymous!

With these preliminaries out of the way, then, the two questions
which I would like to discuss further are:

1. What is the relation between computer program and model,
and between model and theory?

2. What is the relation between model/theory and physical re-
ality?

As Webb convincingly demonstrates with reference to the lit-
erature, a range of opinions exists on question 1, but I hold to the
view succinctly expressed by Moor (1978, p. 220) some years ago.
As he pointed out, “computer scientists often talk as if there is no
distinction among programs, model, and theories; and discussions
slide easily from programs to models and from models to theo-
ries.” Webb tacitly assumes that we already have some computer
program (running, say, on a mobile robot) which is to be viewed
as a model – the task is to decide if this model is “good” (i.e., has
some useful or interesting relation to theory and/or reality) or not.
This assumption is common in the field. For instance, Dean (1998,
p. 64) writes: “For a biologist, an animat is a version of a familiar
tool, a model.” So let us agree to ignore any distinction between
“robot” (or “animat,” or “program”) and “model” and move on.
Now, Moor’s view is that “a computer model does not automati-
cally embody a theory in the important sense that one knows what
the theory is . . . . The theory must be statable independent of the
program’’ (p. 221). In other words, sometimes a computer model
can embody a theory but sometimes it does not.

Note that we have followed Moor’s careful wording here, when
he writes of a model which can “embody a theory.” The concept is
similar to Nagel’s (1961) “model of a theory” which can be either
a “substantive” or a “formal” analogy (p. 110). The former takes a
more or less familiar physical system, with known properties or re-
lationships between its elements, and uses it to suggest corre-
sponding properties or relationships in the theory which is being
developed so as to understand a less familiar system. This sort of
correspondence is no doubt what Webb has in mind in mention-
ing “substitution” as a mechanism of abstraction in biorobotics
(sect. 3.1). Often the terms used to describe the familiar, model
system are simply transplanted into the less familiar situation.
That is, the model is “semantic.” The “formal” analogy is typified
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Figure 1 (Damper). (Unpublished cartoon. Copyright Nick Harding. Permission to reproduce granted by
Nick Harding.)
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by a mathematical model in which the relation between abstract
objects, devoid of content, and operations upon these objects, are
exploited in defining the model. The difficulty of devising un-
equivocal definitions, which Webb takes up in detail, accords with
Nagel’s warning: “The only point that can be affirmed with confi-
dence is that a model for a theory is not the theory itself ’’ (p. 116).

One can easily think of models which embody a theory in Moor’s
sense, statable independent of any particular program implemen-
tation. One obvious example (of the “mathematical” kind) is the
Hodgkin-Huxley model of the nerve cell action potential (Hodg-
kin & Huxley 1952). As an example which does not pass the “in-
dependently statable” test, Moor gives the celebrated AI program
ELIZA (Weizenbaum 1966) which embodies not a theory of “in-
telligence” but a collection of ad hoc programming tricks. A use-
ful and interesting argument might then be had about which side
of the divide to place currently-popular connectionist models, but
space does not allow us to develop this topical issue here. Instead,
the reader is referred to the relevant literature; particularly Zipser
(1992), O’Reilly (1998), and Dror and Gallogly (1999).

Turning now to question 2, Webb (perhaps wisely) declines “to
enter this thorny territory” but briefly argues “for no more than an
instrumentalist position.” It is commonplace in the philosophy of
science to set instrumentalism (“antirealism”) against realism as ir-
reconcilable alternatives that one chooses between according to
taste – see Kim (1998, p. 90) for a succinct statement of the issue
and Nagel (1961, Ch. 6) for a more lengthy development. As a
practically-minded engineer rather than a philosopher, and not
being given to adherence to any particular school, I believe both
have something to offer. However, instrumentalism definitely
takes precedence. For, until a theory has proved itself as an in-
strument of prediction, it is not even worth considering its claims
to reality. Take the standard model of physics – a highly-success-
ful theory from the instrumentalist (or any other!) viewpoint. As it
has developed, as its predictive power has improved, so it has
tended to become a better and better “fit” to reality. For this is
how good science works. Still, it remains a model/theory, logically
distinct from reality, and not to be confused with it.

Biorobotic models can contribute 
to neurobiology

Fred Delcomyn
Department of Entomology, University of Illinois, Urbana, IL 61801.
delcomyn@life.uiuc.edu http ://www.life.uiuc.edu/delcomyn

Abstract: The idea that biorobots can be used as a testbed for the evalu-
ation of hypotheses about how an animal functions is supported. Genera-
tion of realistic feedback is a major advantage of biorobotic models. Nev-
ertheless, skeptics can only be convinced that this approach is valid if
significant biological insights are generated from its application.

This is a wonderful paper. In the first section, Webb analyzes the
concept of a “model” and describes the various types. Although ar-
guments over what a model is and whether a model can be useful
in understanding biological phenomena are certainly not new
(e.g., Vowles 1964), Webb does an unusually thorough job of con-
sidering the various points of view. In the second part of the pa-
per, Webb makes a good case for the view that a “biorobot” rep-
resents a particular kind of model, one that offers considerable
advantages for the study of biological systems. In particular, she
suggests that biorobots can be designed and built as “models of an-
imals” (her emphasis). By this she means that robots can be used
as a kind of testbed for the evaluation of hypotheses about how an
animal functions, or how the behavior of that animal is controlled
or coordinated.

I wholeheartedly support this position. A significant difficulty
with most other forms of modeling, be they paper and pencil cir-
cuit diagrams or computer simulations of biological processes, is

that they require the modeler to make many assumptions about
factors that may influence the performance of the model but that
are not directly a part of it. For example, a variety of formal mod-
els have been developed of the way in which insect locomotion
(walking) is generated and coordinated (Dean 1991; Graham
1977). The main objective of these models is to show how the co-
ordinated patterns of motor output to leg muscles that underlie
walking can be generated. However, although sensory feedback
from the moving legs is an important component of these models,
the sensory signals that are used are arbitrary, in the sense that the
model is designed so that it receives the types and strengths of sen-
sory signals that the researchers believe will be generated at vari-
ous times during the stepping cycle. Although the signals used in
the models are derived as much as possible from experimental
data, they are nevertheless unlikely to be as variable as sensory sig-
nals in living animals are (Ridgel et al. 2000). Therefore, in so far
as values of the feedback used in the models are at variance from
the values of the sensory feedback actually present during walk-
ing in an insect, the models will yield an output that does not ac-
curately reflect what would happen in the living animal.

By building a real mechanical device, researchers can avoid this
difficulty. If electromechanical analogs of important sensory struc-
tures on the legs are built into the robot, sensor feedback similar
to that actually produced by sense organs in a walking insect will
be generated as the robot walks. Hence, a computer model of the
control system for walking can be evaluated by making it the con-
trol system for the robot and analyzing how well it performs. Not
only will sensor feedback then depend on actual movements of
and loads on the legs, the necessity for the control system to con-
trol a physical body will allow an evaluation of the control archi-
tecture (which incorporates ideas of how the central nervous sys-
tem controls walking) that will be considerably more useful than
any test that can be run on a computer simulation model (Ritz-
mann et al. 2000). This is the basis of the trend toward building
robots that are modeled as closely as possible after particular ani-
mals (e.g., Delcomyn & Nelson 2000; Pfeiffer et al. 1995; Quinn
& Ritzmann 1998).

Nevertheless, Webb’s paper will undoubtedly have its detrac-
tors, either those who do not consider modeling a useful activity
in neurobiology, or those who would emphasize the very real dif-
ficulties that modelers must operate under to assure the biologi-
cal relevance of what they do. For some, the reaction will un-
doubtedly be more emotional than rational. They like to work with
living tissue and may have little regard for formal models. For oth-
ers, the question of how much like the animal the model must be
may seem overwhelming. The fact that neither computer simula-
tions or robots can really be “like” the animals they attempt to em-
ulate renders virtually any model biologically irrelevant in their
minds.

It is certainly possible to build a strong case that, given the va-
riety of detailed computer or robotic “models” of biological sys-
tems being designed and investigated now – as discussed in part
by Webb – such modeling has entered the mainstream (e.g., Beer
et al. 1998; Churchland & Sejnowski 1992). However, an objec-
tive analysis of papers on the topic relative to more traditional
physiological papers might suggest otherwise.

The fact of the matter is that modeling is an approach that does
not come naturally to most neurobiologists, who are attracted to
the field for reasons other than an interest in computers or robot-
ics. It is up to those of us who embrace these methods to demon-
strate the biological relevance of the models with which we work
if we expect our research to be recognized by our physiologically-
minded peers as relevant to what they do.

For this recognition to occur, we must do two things. First, we
must be relentless in our attempts to link our models to biological
reality. Sentiments such as “our control system generates behav-
ior similar to that of an animal and therefore it reflects what hap-
pens inside the animal’s nervous system” are seductive but not suf-
ficient. Modelers must be their own harshest critics when it comes
to accepting simulation or biorobotic results as relevant to biology.
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Second, we must make every effort to investigate problems of cen-
tral biological interest and to tie our modeling results back to these
problems. Shedding light on important questions will always catch
people’s attention. Anything less will doom this promising ap-
proach to the backwaters of research, a kind of fringe that may be
interesting in a “gee whiz” kind of way, but one without relevance
to the main problems in which researchers have an interest.
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Robotic search: What’s in it 
for comparative cognition?

Carlo De Lillo
Department of Psychology, University of Leicester, Leicester LE1 7RH,
United Kingdom. cd12@le.ac.uk
http ://www.le.ac.uk/psychology/cd12/

Abstract: Although the advantage of biorobotics over traditional model-
ling tools is not always evident from the studies on animal search addressed
in the target article, this commentary argues that testing different robotic
architectures and specific biological organisms in structured search spaces,
where environmental constraints matter, might prove one of the most prom-
ising research strategies in comparative cognition.

The strongest rationale for biorobotics, permeating most of the di-
mensions along which models are evaluated in the target article,
resides in its potential for providing complete (from perception to
action) physically instantiated models which are capable of cap-
turing the interrelationships between agent and environmental
constraints (the very convincing “medium” argument).

As such, robotic simulations are particularly appropriate where
the structure of the environment plays a primary role in goal di-
rected activities such as spatial search and foraging. Simple robotic
architectures aimed at implementing foraging behaviour are pro-
vided by behaviour-based approaches in robotics (Arkin 1998).
However, these are detached from their biological counterparts.
“Wander – acquire – retrieve” characterisations of foraging tasks
do not do justice to the fact that animals never, not even micro-or-
ganisms, ramble randomly; that their search strategies can be-
come more sophisticated with experience; and that animals often
keep track of locations explored to avoid wasteful re-visits of ex-
ploited resources (Bell 1991).

Since biological relevance is the first dimension used by Webb
to evaluate robotics research, the lack of biological plausibility of
some of these models justifies their exclusion from the studies
listed in Table 1. The target article is, however, too parsimonious
in providing alternative examples of successful bio-robotic mod-
elling of animal search.

The only article explicitly focusing on search in animals and ro-
bots included in the list (Gelenbe et al. 1997) reviews studies on
search in artificial agents on the one hand, and biological ones, on
the other, but does not offer specific examples of robotic simula-
tions which have lead to insights concerning the mechanisms that
control search strategies in animals. The examples considered
there are of formal models of decision-making based on data ob-
tained from operant “analogues” of foraging tasks where, for ex-
ample, pecking behaviour in birds might show how rates of rein-
forcement control “patch” (where a patch is one of the pecking
keys) choice (e.g., Stephens & Patton 1986).

Such studies have had an impact on theories of animal behav-
iour, and it is possible to see their relevance for engineers, for ex-
ample, who – with specific applied aims in mind – seek to empower
their systems with useful decision-making rules. Nevertheless, the
added value of a robotic implementation of these formal models

for the understanding of how animals control their behaviour in a
foraging task is not transparent.

If the spatial distribution of patchy resources and the structure
of the environment is not relevant to the task, and the animals are
faced with binary choices between adjacent keys, mathematical
models might be more powerful than robotic simulations for test-
ing specific theoretical hypotheses. The benefits of biorobotic
modelling are also obscured in other paradigms where the inter-
relationship between organisms and environmental constraints is
not central to the task, such as in delayed Matching-to-Sample,
even if the experimental apparatus allows the presentation of the
same stimuli to rats, monkeys, and robots (Touretsky & Saksida
1997).

The scope of robotics could be much greater in the context of
tasks, such as those featuring multiple loci to search for hidden
baits, where organisms have the opportunity to exploit the spatial
structure of the search space and organise adaptively their pat-
terns of movements on the basis of the constraints it affords.

Systematic manipulations of the structure of the search space
reveal that monkeys’ search efficiency is affected by the spatial
constraints afforded by the environment (De Lillo et al. 1997),
that they restructure their search patterns in ways that minimise
the implicit costs (in terms of memory load or distance travelled)
of unprincipled search trajectories (De Lillo et al. 1998), and that
they may plan up to two steps ahead in their sequence of move-
ments (Cramer & Gallistel 1997).

The assessment of the behavioural match between different ro-
botic architectures and different organisms faced with the above
tasks, which can be easily set up for use with animals and robots,
might reveal the extent to which particular forms of control suf-
fice to account for the search behaviour of organisms charac-
terised by different levels of cognitive complexity. For example,
the extent to which search organisation can be explained on the
basis of a limited set of simple hard-wired rules, repeated at each
step of the behavioural sequence; or, what sort of costs have to be
monitored for dynamic adaptation to environmental changes to
emerge; or, whether or not planning (a controversial issue among
proponents of different approaches to robotics) is required to
match the behaviour of the target system.

As mentioned by Webb, often robotic research has been able to
show that when constraints are taken into account, simple control
procedures suffice in explaining apparently complex behaviours.
In problems where the spatial structure of the environment is
unimportant, even minimalist approaches to non-robotic simula-
tions can be useful for disambiguating the sufficient conditions for
successful task solution and highlight the problems faced by sim-
ple systems when the structure of the problem changes slightly
(De Lillo et al. 2001). However, in spatial search non-robotic mod-
elling would be particularly exposed to the risk, as rightly pointed
out by Webb, of overlooking some of the numerous potentially rel-
evant variables, such as the complexity of the spatial structure of
the environment, or, in this specific case, the fact that the organ-
ism continuously changes vantage point during search.

A final point concerns the fact that, apart from a few examples,
to date biorobotic models seem to have largely targeted inverte-
brate species (as reflected in the range of biological organisms sur-
veyed in Webb’s article). This obviously undermines the scope of
biorobotics in animal cognition research.

However, if over-reliance on available data is avoided, and an
effort is undertaken to develop new research programs specifically
aimed at assessing the behavioural match of particular artificial
and biological agents – in the appropriate tasks and under sys-
tematic experimental manipulations – the (otherwise extremely
valid) argument for targeting simple systems, of which we have de-
tailed behavioural and neurophysiological knowledge, does not
have to be taken too far. Under these conditions robotics has the
potential to become one of the best heuristic tools in animal and
comparative cognition.
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An intentional dynamics approach 
to comparing robots with their 
biological targets

Judith A. Effkena and Robert E. Shawb

aCollege of Nursing, University of Arizona, Tucson, AZ 85721; bDepartment
of Psychology, University of Connecticut, Storrs, CT 06269.
jeffken@nursing.arizona.edu reshaw@uconnvm.edu
http ://www.nursing.arizona.edu/scripts/
facpageV2.asp?txtLoginName 5jeffken

Abstract: After identifying similarities in the paradigmatic problems of
biorobotics and ecological psychology, we suggest a way to compare the
performance of robots with that of their biological targets. The crucial
comparison is between the intentional dynamics of the robot and those of
the targeted animal, a measure that depends critically on recognizing and
describing the underlying affordance-effectivity match of the target sys-
tem.

As ecological psychologists, our response to Webb’s target article
was largely positive. In this commentary, we first identify areas of
similarity in the fundamental problems and emerging solutions of
biorobotics and ecological psychology, then offer a potential an-
swer from ecological psychology to what Webb correctly charac-
terizes as an unsolved problem in robotics: that is, how best to
compare the performance of the model with the target biological
system.

Ecological psychology and biorobotics have much in common,
both in their paradigmatic problems and in their proposed solu-
tions (Effken & Shaw 1992). In each domain, the paradigmatic
problem has been solving how animals/robots can navigate suc-
cessfully through a cluttered environment. Increasingly, the solu-
tions proposed by bioroboticists for robot movement and vision
resemble those of ecological psychologists. Bioroboticists have
found that coordinating a robot’s movement requires reducing the
number of degrees of freedom to be controlled. In ecological psy-
chology, the problem of coordinating human movement has cul-
minated in the discovery of low-dimensional dynamical laws that
govern the complex coordinative structures that subserve any
physical action (e.g., Turvey 1990). Gibson (1958) intuited that an-
imal navigation would turn out to be governed by low dimensional
rules for the perceptual control of action. For example, if you want
to effect a soft contact with an object – or another individual –
move in such a way as to cancel the accelerative centrifugal flow
of the optic array, which, since the flow is a function of visual an-
gle tangent, will bring the approach into soft contact with the ob-
ject’s surface precisely at the time when the visible contour of the
image is maximal. Ecological psychologists have gone on to un-
cover the informational basis for this kind of solution; specifically,
the complex visual invariants that animals use to guide their navi-
gation (e.g., Lee 1976; and see Warren 1998, for an excellent re-
view). Gibson (1986) made it clear that his proposed “rules” were
not commands issued by a brain, but emerge from the animal-
environment system. As Webb notes, in biorobotics, similar low-
dimensional rules have begun to replace complex computational
algorithms for robot vision (e.g., Franceschini et al. 1992; Webb &
Scutt 2000; Williamson 1998).

Although she advocates the inclusion of context and testing in
the real world, Webb defines medium rather narrowly as “what
the model is actually built from.” From that point of view, the crux
of the problem is whether the medium supports or interferes with
the evaluation of performance. However, from an ecological psy-
chology point of view, including environmental constraints is cru-
cial for understanding the problem and making the actor (human
or robot) contribution simpler (Effken et al. 1997; 2001). For ex-
ample, the ecological approach to interface design begins by iden-
tifying environmental constraints because they are more stable
than social or user constraints (Vicente 2000). Indeed, ecological
psychology is founded on a series of dual (mutual and reciprocal)
relationships, of which the most general is the relationship of an-
imal and environment. The environment comprises sources of in-

formation (affordances) for an animal with particular real-time
control capabilities (effectivities). The same environment (e.g., a
chair) affords different action opportunities for an adult human
and a mouse because of their different effectivities. Similarly, the
same adult human may respond quite differently in different en-
vironments (e.g., at home and at work). Consequently, it may be
more useful to model specific target systems and derive more gen-
eral rules, as Webb suggests.

Webb notes that comparing the robot’s behavior to the target
remains a weakness in most biorobotics studies. If the minimal
unit of analysis is the affordance-effectivity match in a particular
animal-environment system, then a very different approach to
measurement may be required. Measuring the fit of the animal to
the environment can be achieved by using dimensionless invari-
ants (e.g., Shaw et al. 1995; Warren 1984; Warren & Whang 1987)
or measures derived from conjugate field theory (Kadar & Shaw
2000).

However, the crucial comparison to be made is between the in-
tentional (goal-directed) dynamics of the robot and the intentional
dynamics of the targeted animal. This match can be measured by
the strength of a coupling term between the two models (the ob-
served robot path space versus the intended animal path space).
Selecting an appropriate measure of coupling strength depends
critically on recognizing and describing the underlying afford-
ance-effectivity match of the target system. The environment, un-
der Gibson’s affordance description (what the environment offers
an animal, for good or ill), sets up opportunities for action by the
target actor. Consequently, any description of the environment
must include those affordances that the target animal requires to
remain viable (i.e., able to meet its needs and satisfy the goals that
support the satisfaction of those needs). Similarly, any description
of the target animal must include the effectivities (real-time con-
trol capabilities) needed to realize the essential affordance goals.
This affordance-effectivity match provides the criterion against
which the robot’s performance must be compared.

For measurement purposes, the paths the robot can potentially
follow can be partitioned into those that are functionally useful,
those that are irrelevant, and those that are actually counterpro-
ductive for achieving the goal. This partitioning can be achieved
by using the inner product (the metric tensor of the path space),
defined as the difference in the direction cosines of the two paths
(target’s path versus model’s path) multiplied by their projected
lengths. From this an overlap integral (index of agreement) can be
computed. The overlap measure is based on the integral of this in-
ner product difference measure and provides a kind of correlation
ratio between the path set of the robot and the path set of the tar-
get animal. This correlation ratio provides an “index of agreement”
that is not sensitive to nonlinearity, as ordinary correlations are,
but is sensitive to asymmetry between the systems coupled (e.g.,
the model system is led by the target system but not vice-versa).
By using this approach, researchers can quantify the affordance-
effectivity match as a function of how well the behavior of the
model can be predicted by the behavior of the target.

Biorobotic simulations might offer some
advantages over purely computational ones

Donald R. Franceschetti
Department of Physics and Institute for Intelligent Systems, The University of
Memphis, Memphis, TN 38152. dfrncsch@memphis.edu
www.people.memphis.edu/~physics/drf/FRANCESC.HTML

Abstract: A slight modification of Webb’s diagrammatic representation of
the dimensions for describing models is proposed which extends it to cover
a range of theoretical models as well as material models. It is also argued
that beyond a certain level robotic simulations could offer a number of real
advantages over computer simulations of organisms interacting with their
environment.
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The target article provides a fairly compact framework within
which physical robotic models of biological systems can be classi-
fied. The framework is summarized in the article’s Figure 2 in
which the system being modeled is itself the center, with its mod-
els then characterized along seven dimensions depending on the
abstractions or generalizations made of the system. The notion
that the best possible material model of a system is the system it-
self, drawn from Rosenblueth and Wiener (1945) has a certain log-
ical appeal, but raises a serious question. If, as these authors note,
the main use of models is as an aid to understanding phenomena
that cannot be understood as directly observed – and most bio-
logical processes are likely to persist in this category for some time,
– then the system itself is at the same time inherently unusable as
a model of itself. On the other hand, in the study of organism-
environment interactions, the system being modeled includes
both the environment and the organism, and the biorobotics ap-
proach allows these to be separately modeled, often with the en-
vironment being taken as the most accurate model of itself, and,
within the robot, some of the component processes by themselves
as well.

A case can be made for visualizing the target article’s Figure 2,
not as laid out in a plane, but as transcribed to a globe, with the la-
bel “identity” at one pole and the seven boxes placed about the
equator. The outgoing lines in the figure then become longitudes
which would again converge at the opposite pole, perhaps labeled
“formal” which would be reserved for the highly abstract, general
and symbolic models which have provided insight into some of the
basic biological processes common to all, or at least, a great many
living organisms. While this geometrical representation should
not be taken too literally, it is reasonable to view the set of very
simple, abstract and symbolic models as representing a conver-
gence of the outgoing lines as one moves away from the material
and towards the theoretical. The axis of the globe would then 
correspond to the single line continuum suggested by Shannon
(1975). The globe thus envisioned has a certain Aristotelian char-
acter, but that need not militate against its usefulness.

Near the formal pole of this structure one would find such
highly abstract but informative models as Von Neumann’s (1966)
cellular automata, which try to capture the essence of reproduc-
tion; Turing’s (1952) description of morphogenesis, which still
stimulates work in developmental biology; and Fontana’s (1992)
algorithmic chemistry, which has been used to model the origin of
metabolism in prebiotic days. More sophisticated models of the
dynamical system (van Gelder 1998) or dynamical field type (The-
len et. al. 2001) would appear in the lower hemisphere but closer
to the equator.

It is clear that the lower hemisphere belongs to computer sim-
ulation, except perhaps the area near the pole, where closed form
mathematical results might be obtainable. Near the “identity” or
material pole, it is tempting to think that robotic implementations
or animats might have the upper hand. There are several reasons
why this might be so. As noted above, when the focus is on sen-
sory and motor behavior, one must model both the organism and
its environment, and in biorobotics these models need not be at
the same level. If the robot is to scale, and the robot sensors de-
tect the same features of the environment as the organism, then
the environment can serve as its own model. There is then no need
to worry over how best to model the physical properties of, for ex-
ample, desert sand or the internal structure of a chemical plume.
Even if the robot is not to scale or senses a different stimulus, it
still may be relatively easy to build a credible model of the envi-
ronment. Although keeping track of the organism boundary is cer-
tainly possible in a computer simulation, it can be computation-
ally expensive. It is done automatically with a robot. Some physical
phenomena within the organism, say, diffusion within an irregu-
larly shaped space, are likewise somewhat expensive to model
computationally, but solve themselves in a material model.

The best models are like the best students – one gets more out
of them than one puts in. This was certainly true historically for
the simple theoretical models assigned to the formal pole, and

Webb cites instances in which it is becoming true for biorobotics,
still a very youthful endeavor. Despite the inevitable introduction
of the abstract in the definition of any model, modeling, or at least
the drawing of conclusions from them, remains an empirical af-
fair. Robotics is still a very young technology, and it is far too soon
to gauge what the limits of its contributions to the understanding
of behavior will be.

Models as implementations of a theory, 
rather than simulations: Dancing to a 
different drummer

Stan Franklin
Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152.
franklin@memphis.edu http ://www.msci.memphis.edu/~franklin

Abstract: Robots, as well as software agents, can be of use in biology as
implementations of a theory rather than as simulations of specific real
world target systems. Such implementations generate hypotheses rather
than representing them. Their behavior is not predicted, but rather ob-
served, and is not expected to duplicate that of a target system. Scientific
knowledge is gained through the testing of generated hypotheses.

Robots, or software agents, can be of value to biology as genera-
tors of hypotheses as well as in the more traditional ways so well
described by Webb. Let me illustrate with a software agent exam-
ple. Essentially the same architecture could control a robot. In-
telligent Distribution Agent (IDA) (Franklin 2000b; Franklin et
al. 1998) implements global workspace theory, a psychological and
neuropsychologicial theory of consciousness and cognition (Baars
1988; 1997; Franklin & Graesser 1999), as well as parts of other
theories (Barsalou 1999; Glenberg 1997; Kintsch 1998; Sloman
1999). Supported by the US Navy, IDA is intended to replace a
human personnel agent in the real world task of job distribution
(Franklin 2001).

Models such as IDA have the potential to play a synergistic role
in modeling a scientific theory. The theory constrains the design
of the agent or robot that implements (models) that theory. While
a theory, including many from cognitive neuroscience, may be ab-
stract and only broadly sketch an architecture, an implemented
computational design provides a fully articulated architecture and
a complete set of at least computational mechanisms. This archi-
tecture and set of mechanisms provide a richer, more concrete and
more decisive theory, as well as both a conceptual and a compu-
tational model. Moreover, every design decision taken during an
implementation translates into a hypothesis that serves to flesh out
the theory. These hypotheses may motivate experiments to test
them, thus providing direction for biological research. Conversely,
the results of such experiments motivate corresponding modifica-
tions of the architecture and mechanisms of the agent or robot and
the cycle starts again. These ideas have been discussed more fully
elsewhere (Franklin 1997).

IDA also implements William James’ theory of voluntary action
(Franklin 2000a; James 1890; Kondadadi & Franklin 2001). The
experimental work of neuroscientist Benjamin Libet lends sup-
port to this implementation of voluntary action as mirroring what
happens in humans (Libet 1999; Libet et al. 1983). The IDA im-
plementation offers a new interpretation of Libet’s work and sug-
gests possible experimental tests (Franklin & Graesser 2001).

It is also likely that observing the behavior of such software
agents or robotic implementations will lead to additional hy-
potheses that can then be tested. The full IDA prototype is now
complete. We’ve just begun running her continuously so that such
observations can be made.
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The nature and function of models

Ronald N. Giere
Center for Philosophy of Science, University of Minnesota, Minneapolis, MN
55455. giere@umn.edu http://www.tc.umn.edu/~giere/

Abstract: There is no best scientific model of anything; there are only
models more or less good for different purposes. Thus, there is no gen-
eral answer to the question of whether one should model biological be-
havior using computer simulations or robots. It all depends on what one
wants to learn. This is not a question about models, but about scientific
goals.

1. Introduction. Scientists usually do not engage in methodol-
ogy for its own sake, but because there is a particular issue or prob-
lem that requires methodological reflection. Webb’s issue is the le-
gitimacy of biorobotics, and, in particular, the use of robots to
model biological systems. She focuses on the notion of modeling
itself. As is typical in methodological debates, she appeals to au-
thorities well beyond her own scientific specialty, including some
in my own specialty, the philosophy of science. My purpose here
is not so much to criticize as to sharpen and emphasize some of
the many points she has made.

2. Questions about models. There are many questions one can
ask about scientific models. There are, for example, ontological
questions (What kinds of things are models?); functional questions
(What can one do with models?); evaluative questions (What
makes a model a good model?); and epistemic questions (How can
we know that a given model is a good model?). Webb considers all
of these sorts of questions. I think the ontological and functional
questions are primary. Answers here provide a framework for an-
swering other sorts of questions. But one should not expect to find
the single best answer for any of these questions. There are differ-
ent good answers depending on one’s purposes. I will assume
Webb’s purposes.

3. Models as representational objects. I suggest we begin with
a universally acknowledged example of a good scientific model,
Watson’s original physical model of DNA constructed out of tin
and cardboard. This model was a physical object. It was not a set
of equations, a body of knowledge, or any other sort of purely lin-
guistic or symbolic object, the sorts of things Webb reports others
as claiming models to be. One could say that this model embodies
knowledge, for example, of the chemical composition of DNA,
even knowledge expressible in formulas. But the model itself was
not composed of such things.

The primary function of this model seems clearly to have been
to represent the physical structure of a DNA molecule. Discover-
ing the physical structure of DNA was Watson’s primary scientific
goal. Building such models was central to his method for achiev-
ing this goal, and he achieved success with construction of the fi-
nal model. So here we have one physical object that is being used
to represent, or stand in for, another physical object.

Watson’s model exhibits several fundamental features of repre-
sentational models. The latter represent only selected features of
their target. Watson’s model had neither the size nor chemical
composition of DNA. Moreover, his model represented the struc-
ture of DNA with less than perfect accuracy. So another funda-
mental characteristic of representational models is that they rep-
resent features only to some approximate degree of accuracy.
These two features of models reflect the idea, quoted by Webb in
several different forms, that the only perfect model of anything is
the thing itself. Thus, paradoxically, merely possessing a perfect
model of something provides no increase in our scientific under-
standing of that thing.

These two features of representational models have the very
important consequence that there is no such thing as the model
of anything. There are many different models representing dif-
ferent features to different degrees of accuracy. Which of these
many possible models one wishes to consider depends on the
purposes for which the model is being constructed. Thus, one

cannot eliminate the purposes of scientists from the evaluation of
any model.

4. Abstract models. Many of the representational models used
in the sciences are not physical objects in the way Watson’s origi-
nal model of DNA was a physical object. They are abstract objects
in the way that mathematical objects are abstract. Consider the
simple harmonic oscillator treated in all textbooks of classical
mechanics. Its motion is characterized by the force function, F 5
2k x. Now we know that no actual oscillating system is a simple
harmonic oscillator. All real systems exhibit dissipating forces,
such as friction. So the simple harmonic oscillator must be an
abstract object. One may also say it is an idealized object, an un-
realized ideal. Nevertheless, we can use the abstract object, the
model, to represent real oscillators even though the fit will never
be perfect. Moreover, we cannot identify this abstract object, the
model, with the mathematical equations used to describe it sim-
ply because the same abstract structure, thus the same model, can
be described using many different equations.

5. Computer simulations and robots. A computer simulation
is just a fancy way of investigating the mathematical features of
an abstract model characterized by a set of equations. The phys-
ical computer puts constraints on what sorts of functions can be
used in the characterization of the model and how fast they can
be solved. But this is no different in principle from the limita-
tions of a person solving differential equations by hand. The
main limitation to computer simulation is that literally every-
thing has to be characterized symbolically. If one wants to model
an organism in an environment, one has to model the environ-
ment as well. On the other hand, computer simulations have the
desirable feature that everything about the model is explicitly
represented.

Here is an advantage of using robots as models of biological sys-
tems. If locomotion is the object of study, for example, no calcu-
lations of the physical forces on a limb are required. The relevant
forces just operate as they will. And gravity, of course, is the same
for a robot as for a real animal. On the other hand, robots have the
disadvantage that one does not get an explicit representation of
the physical forces.

6. Conclusion. The question whether to use computer simula-
tions or robotic models is really a question about what one wants
to learn about particular types of living systems and for what pur-
poses. There is no basis for claiming that one form of modeling is
inherently superior to any other.

Can robots without Hebbian plasticity make
good models of adaptive behaviour?

Jørn Hoklanda and Beatrix Vereijkenb

aDepartment of Computer and Information Sciences, Faculty of Physics,
Informatics and Mathematics, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway; bHuman Movement Science
Section, Faculty of Social Sciences and Technology Management,
Norwegian University of Science and Technology, N-7491 Trondheim,
Norway. Jorn.Hokland@idi.ntnu.no Beatrix.Vereijken@svt.ntnu.no
www.idi.ntnu.no/~hokland/ www.svt.ntnu.no/psy/Beatrix.Vereijken/

Abstract: No. Animals’ primary problem is the shaping of movements,
guided by and adapting to sensory signals. This requires a narrower class
of biorobotic models than that spanned by Webb’s dimensions and exam-
ples. We claim that all model variables and mechanisms must have real
counterparts, input vectors must model known sensor fields, internal state
vectors and transformations must model neurophysiological processes,
and output vectors must model coordinated muscle signals.
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The ultimate function of the nervous system is control 
of behavior. The brain is the organ that moves the 

muscles. It does many other things, 
but all of them are secondary to making 

our bodies move.
(Carlson 2001, p. 243)

Behaviour in turn, is shaped by learning.
(Kandel 2000, p. 1247)

Webb argues that “biological behaviour needs to be studied and
modelled in context, that is, in terms of the real problems faced
by real animals in real environments.” The real problem for ner-
vous systems is to produce sequences of motor output vectors by
transforming internal state variables and sensory input vectors,
and to adapt this transformation based on experience. The real
problem in biorobotic modelling is to describe this transformation
and its change mechanisms, and to test this description. Clearly,
some models are better suited to solve this problem than others.
Within Webb’s dimensions describing the variability of models,
biorobotic models should therefore occupy a quite narrow 7-di-
mensional subspace.

Performance match. The primary aim of biorobotics is to seek
a match between simulated behaviour and target behaviour. But
“should the behaviours be indistinguishable or merely similar?”
(target article, sect. 3.6). In our view, indistinguishable is clearly
better, and Webb does not seem to give counterarguments. Thus,
the benchmark is quantitative matching of movements. Unfortu-
nately, this makes the testing of sensor models less straightfor-
ward. Although such targeting may guarantee realistic inputs, that
is, close “sensor matches,” the prevailing output of low-dimen-
sional action commands, often to wheels, is less suited for behav-
iour matching than are high-dimensional movement patterns.
This implies that biorobotics best validates models describing an-
imal coordination, targeting not what action to make, but how be-
haviour is created.

Abstraction, structural accuracy, relevance, and level. In or-
der for biorobotics to help us learn how movements are shaped by
vision, hearing, taste, and so on, the simulation should depend on
input vectors representing real sensor signals only. A testable tar-
get system is the circuit from retina via superior colliculus to eye
muscles, since it produces target movements known as saccades.
However, when targeting more complex behavioural patterns, the
fifth sense comes first: “Sensory information from muscles, joints,
and skin . . .  is essential for regulating movement. Without this so-
matosensory input, gross movements tend to be imprecise, while
tasks requiring fine coordination in the hands, such as fastening
buttons, are impossible” (Kandel et al. 2000, p. 713). Several of
Webb’s examples applying her criteria are not based on realistic
inputs, for instance, the PID control of robot arm joint move-
ments, which is based on simple sinusoidal target trajectories
(sect. 2.4).

Webb states that “the performance of similar behaviour is never
sufficient to prove the similarity of mechanisms – this is the prob-
lem of underdetermination” (sect. 3.6). We trust she refers to
neural network mechanisms, that is, the model should at least
carry the details of a connectionist network with internode weights
and intranode activations. Most state variables and mechanisms of
a simulation should have uncontroversial physiological counter-
parts or, exceptionally, one hypothetical mechanism. Should the
simulation match the real behaviour, the hypothetical mechanism
must then be experimentally tested. In Webb’s words, “The main
criteria for relevance could be taken to be the ability of the model
to generate testable hypotheses about the biological system it is
drawn from” (sect. 3.1, her emphasis).

The connectionist level being the highest, what is the lowest?
Must the Hodgkin-Huxley model of ionic currents be included, or
will a simple threshold of weighted inputs do? Is scalar-valued
synaptic efficacy sufficient to obtain performance match, leaving
irrelevant the details of presynaptic transferase and release, of
transmitter esterase and reuptake, and of short- and long-term

postsynaptic potentiation? Such questions represent the very
essence of neuroscientific modelling, and researchers in bioro-
botics must make risky choices, “the purpose in modelling is often
to discover what are the ‘relevant features’ or ‘essential struc-
tures’” (Webb, sect. 2.1).

Medium. Although “two-wheeled motor control has to cope
with friction, bumps, gravity, and so on” (sect. 4.4), we regard this
more as the challenge of wheelchair engineering than of behav-
ioural science. In her definition of biorobotic modelling, Webb
rules out purely computer-based models, since they can break or
neglect physical laws given that “we include only what we already
assume to be relevant” (sect. 4.7). This is true, but equally so for
wheeled devices, as the ultimate function of the brain is to move
the muscles (Carlson 2001). Thus, a simulated body with legs may
be a better biorobotic model than some physical device, assuming
that the simulated robot and environment are Newtonian. When
modelling creatures on land, space must be three-dimensional, in-
ertia must exist, the body must have limbs with mass and joints
with muscle forces, and the environment must have gravity and
some friction surface to walk on. Such robots may succeed where
physical robots fail, since most neural net simulations will fall be-
hind in transforming real-time somatosensory inputs into proac-
tive muscle commands (see Fig. 1).

Generality. Webb’s pessimistic premise, “if different animals
function in different ways, then trying to generalise over them
won’t work” (sect. 3.3), is only half true. Some functions are
species-specific, others are not. Locomotor patterns, for example,
are remarkably similar across different vertebrates and even in-
sects – normally walking using a tripod gait – spontaneously adopt
a typical tetrapod gait when one leg from each side is removed, re-
gardless of what combination of four legs remains (von Budden-
brock 1921). Therefore, a biorobotic model of locomotion could
be general.

Related to the concept of generality, but not mentioned by
Webb, is the multi-functionality within an animal. A real animal is
inherently a multi-purpose device that continuously constrains it-
self to act as a special-purpose device, in interaction with the en-
vironment and learning from experience. Synaptic plasticity is
suggested as the primary mechanism of development and learn-
ing, and “once synaptic contact is established . . .  continued de-
velopment depends on the coordination of neural activity of pre-
and postsynaptic neurons” (Kandel et al. 2000, p. 1128). Thus we
coin biorobotic models containing synaptic state variables and
some Hebbian change mechanism adaptive.

Commentary/Webb: Can robots make good models of biological behaviour?

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6 1061

Figure 1 (Hokland & Vereijken). Some necessary variables and
mechanisms of adaptive biorobotic models. Left: Hebbian plas-
ticity and integrate-and-fire action. Right: Newtonian mechanics,
including muscled limbs. Arrows: sequences of coordinated mo-
tor output and sensor (including kinaesthetic) input vectors.
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Adaptivity. Answering our title question, only such adaptive
models, fitting the narrower 7-dimensional subspace we have out-
lined here, can meet the challenge of Sanes et al. (2000, p. xiii):
“neuroscientists have come to realize that they are studying a mov-
ing target: growth and change are integral to brain function and
form the very basis by which we can learn anything about it.”

The usefulness property of biorobotic
sensorimotor models: A natural source 
of prosthetic designs

Kristen N. Jaax
School of Medicine, University of Washington, Seattle, WA 98115-2500.
jaax@u.washington.edu
http ://rcs.ee.washington.edu/brl/people/kjaax

Abstract: This commentary addresses an additional feature of biorobotic
modeling: usefulness in prosthetic design. By implementing structurally
and behaviorally accurate models as prosthetics, biologically accurate res-
toration can be approximated. This has potential to reestablish important
peripheral elements of the sensorimotor control system, including limb
biomechanics, proprioception, and vision. Examples given include mus-
culoskeletal prosthetics and retinal implants.

The target article does an excellent job proposing a well-defined
vocabulary and structure by which the modeling community can
analyze the choices made by a given modeler. Hopefully this will
also resolve some of the controversies arising from disparate def-
initions of what a “good” model entails. Webb’s discussion of the
merits of biorobotic modeling is a powerful treatment of a ques-
tion often asked of this young field: What is the purpose of build-
ing a model in hardware rather than simply using a computer sim-
ulation? She clearly demonstrates the unique perspective offered
by this new modeling medium and its resultant ability to generate
relevant biological hypotheses. In this commentary, I wish to ex-
tend this analysis to consider an additional category describing 
biological models: usefulness. The class of biologically-relevant
biorobotic hardware described by Webb, hereafter referred to as
“biorobotic hardware,” distinguishes itself in this category by of-
fering an ideal source for biomorphic prosthetic designs. For this
subset of engineering, it is proposed that the design goals are
closely congruous to those of biological modeling. Several cases
are presented in which biorobotic hardware is being applied to
biomorphic prosthetic design.

Why develop biomorphic prosthetics? The biological faithful-
ness of biorobotic hardware offers distinct advantages in integra-
tion of a prosthesis into the wearer’s sensorimotor system. As
Webb suggests, “engaging closely in modeling the periphery sim-
plifies central or higher level processing” (target article, sect. 4.2).
The behavior of peripheral sensorimotor organs is laden with or-
ganism specific functionality. As noted by Kubow and Full (1999),
the biomechanics of the limb and its actuators is important in the
control of motor tasks such as running. Sensory organs play an im-
portant role as well, filtering incoming stimuli and delivering re-
fined signals to the central nervous system (CNS). Since pros-
thetic communication to the CNS is severely bandwidth limited,
accurately restoring biological filtering in prosthetic hardware has
the potential to dramatically improve the wearer’s perception of
sensory stimulus. Finally, using biorobotic hardware which uses
structurally accurate mechanisms to generate behavior, minimizes
the risk of omitting essential behaviors due to our limited appre-
ciation of the mechanisms of the sensorimotor system.

The goals of biorobotic modeling match well with the goals of
biomorphic prosthetic design. They are of course similar in their
use of engineering hardware as a modeling medium. Biological
relevance is important to ensure that the inevitable abstractions
preserve the essential functional characteristics. The need for

completeness results in integration of multiple levels with a pri-
mary focus on the physical level of sensing and actuation in a real
world environment. Biomorphic prosthetics specifically model
the sensorimotor organ they are designed to replace, although
data availability may require model development based on an-
other species. The goal of “matched filters” (Wehner 1987), how-
ever, necessitates eventual transformation of scale to that of the
human body. Abstraction occurs through simplification, not ideal-
ization, on account of the need to function in the real world. Func-
tional completeness necessarily supersedes full structural accu-
racy in importance, with the goal of a device which closely
approximates the function of the true biological mechanisms. Fi-
nally, behavioral match is critical to attain the benefit of biomor-
phic prosthetic design. One could argue that structural accuracy
is irrelevant so long as behavioral match is assured. Given our in-
complete understanding of the mechanisms involved, though,
striving for structural accuracy minimizes the likelihood of inad-
vertently omitting a key behavior.

Klute et al. (2000) have applied their biorobotic models to the
design of “a biorobotic prosthetic limb engineered to mimic the
performance of an amputated limb.” The design of their bioro-
botic below-knee prosthetic incorporates artificial muscles, called
Gaylord-McKibbon actuators, and artificial tendons with the in-
tent of capturing some of the benefits of normal leg biomechan-
ics including energy conversion, storage, and return. The group
originally used the Gaylord-McKibbon actuators as artificial mus-
cles as part of a biorobotic model to test biological hypotheses re-
garding human arm movement (Hannaford et al. 1995). The arti-
ficial tendons were designed specifically for the prosthesis project
to replicate the properties of biological tendons “to provide ap-
propriate connective tissue between an artificial muscle and the
skeleton of a biorobotic system” (Klute et al 2000). In developing
these models, both engineering specifications and behavioral
match were assessed based on performance data from the biolog-
ical literature. By partially restoring normal limb biomechanics,
this prosthesis has the potential to greatly improve amputee mo-
bility.

Prosthetics technology is at the cusp of enabling direct interface
to the CNS (Rizzo et al. 2001), which will enable the application
of biorobotic sensor models as well to prosthetics applications. A
robotic muscle spindle (Jaax & Hannaford 2002) has been devel-
oped whose core technologies could be used to provide proprio-
ceptive feedback to a powered prosthesis driven by the amputee’s
own CNS. The biorobotic model was developed based on perfor-
mance data from the biological literature with the intent of test-
ing biological hypotheses (Jaax & Hannaford 2002). Such a device
could be used to restore the complex mechanical filtering, trans-
duction and encoding transfer functions characteristic of the na-
tive organ, communicating muscle length and velocity to the CNS
in its native language.

Finally, Boahen (2000) is currently developing a biorobotic VLSI
model of the retina with the intent of using it as an ocular implant
to restore vision. The retina, with its many layers of neural circuitry,
performs extensive manipulations on incoming image prior to pass-
ing the data to the visual cortex. Given the inevitable pixel limita-
tions of a retinal prosthesis, it is advantageous to maximize band-
width usage by supplying preprocessed data to the neural interface.
Accordingly, Boahen hopes to “match the retina’s coding efficiency
by morphing anatomically identified retinal microcircuits into mi-
cropower VLSI CMOS circuits.” In doing so, he is developing not
only a biorobotic model of the retina, but a “retinomorphic” pros-
thetic which could restore vision to patients with devastating ocu-
lar diseases such as retinitis pigmentosa (Boahen 2000). These ex-
amples demonstrate a vital characteristic of the biorobotic
modeling technique: landmark medical applications with the po-
tential to transform the lives of disabled individuals.
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Doing versus knowing

Peter R. Killeen
Department of Psychology, Arizona State University, Tempe, AZ 85287-1104.
killeen@asu.edu
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Abstract: Aristotle’s four causes frame Webb’s question. Comprehension
requires specification of trigger, function, mechanism, and representation.
Robots are real models of function. Physical, biological, and epigenetic
constraints delimit the hypothesis space for candidate mechanisms. Robots
constitute a simplified system more susceptible to formal representation
than the target system. They thus constitute an important tool in a con-
structivist development of scientific knowledge.

Like science in general, modeling is an enterprise that we do bet-
ter than we understand. To say this implies that doing is not the
same as understanding. It follows that fabricating robots that be-
have is not the same as understanding behavior.

Modeling modeling. Webb’s overview of modeling reveals its
protean nature. A leitmotiv in the chorus of characterizations is:

A model is a structure put into correspondence with a target structure.

Then what? Aristotle’s four [be]causes frame the picture provided
by real models such as robots (Fig. 1), and say what. Efficient
causes are triggers of subsequent effects. Formal causes are syn-
tactic models, or descriptions. Material causes are substrates and
mechanisms. Final causes are functions and purposes (Killeen
2001). Real models provide a tool for learning about each cause of
a target system.

Parts ’n parts. Models may be put into correspondence with
systems, or with their components (mechanisms), or with their
components, ad almost infinitum. A clock represented as a pace-
maker and register supports a corresponding recurrent stochastic
model; the pacemaker may be periodic or stochastic, the register
may be analog or digital, each supporting different formal models
– the digital register may be a binary counter; the counter may in-
cur errors in incrementing stages, and that may be captured by its
own stochastic process, and so on. Formal models direct the
search for potential mechanisms.

Depth of representation is not necessary for models. Newton’s
model of the world mapped the orbits of the planets but gave no

clue to machinery that could bridge the distances. This defeat oc-
casioned his resolve to “frame no hypotheses” about gratuitous
machinery. Words to the wise. Requiring biological plausibility
may tell us something about potential machinery at the next level,
and it can improve our sense of what is plausible. But plausibility
becomes less plausible the deeper it is pushed. The elephants sup-
porting the universe may rest on other elephants, but as we de-
scend it quickly becomes academic whether the next substrate is
elephant or turtle. In many cases the constraint of plausibility
merely serves, like the chalk marks on a tennis court, to keep the
game interesting.

Syntactic models. Models can be real or syntactic. Formal
models are stated in a language that has a well-defined syntax: En-
glish, logic, geometry. Often they are subsets of mathematics, em-
ploying some features and not others (e.g., real but not complex
numbers, ordinal but not interval properties). They are proper
subsets of the language, else a prediction and its negation would
both be part of the model. It follows that computers per se are not
models of cognition, even though programs implemented on them
may be. Because scientists are familiar with the elements and re-
lations in the modeling language, they can readily manipulate it to
test and predict. Einstein held that understanding a phenomenon
involves reducing it to a system we already have intuitions about.
For most scientists, mathematics is that system.

Real models. Some real models provide only similitude, not
function. Cartoons, advertising images, and toy models need only
look their part. Such topographical correspondence is of limited
utility to science, which prefers robots to androids, function to
form. Often an unknown or incompletely understood real model
is put into correspondence with the target system. Advances in
conquering a disease usually require the discovery of a “prepara-
tion” – a model biological system in which the disease can be stud-
ied. The most common model in the biological sciences is a ro-
dent. Rats and mice are used as models of humans to predict the
effects of drugs or other procedures; as models of another rodent
whenever a control group is run. A rat is used as a model of itself
in within-subject designs. Real models are often associated with
binary outcomes and null hypothesis statistical tests. The investi-
gator merely wants to know whether a procedure is an efficient
cause for a target response. The critical question about a real
model is: How well does it scale? Threshold effects, square-cube
laws, and change in the model with uncontrolled variables (e.g.,
simple passage of time, placebo effects, demand characteristics)
are threats to their validity.

Remodeling. Some formal models are well-defined but interact
in complex ways as a function of parameter and input. Newton’s
attempts to predict the orbit of the moon was frustrated by its par-
ticipation in a three-body problem. His model was valid but not so
useful until it could be instantiated in a computer. Models of mod-
els, such as computers that sedulously crank the maths, constitute
the same formal models in a different medium.

The medium can, however, change the message. No real model
can represent most real numbers. Computers truncate, trans-
forming reals and transcendentals into rational approximations. In
complex dynamic systems truncation error grows with iteration,
eroding the solutions to noise. Successful physical implementa-
tions can carry more conviction than syntactic ones because they
demonstrate function despite such threats. “Yes, . . .  in theory” is
a reproach of formal models. This is not the case for real models;
but because they set unknowns in correspondence with un-
knowns, “Yes, . . . but so what?” is their reproach.

What is it like to be a robot? Robots that assemble parts of a car
are not faulted for being poor drivers. Robots provide a candidate
system that functions like a target system in delimited ways. This
is often nontrivial, but never more than logically sufficient: Theirs
is not the solution (mechanism) that other robots, or even the tar-
get system, necessarily use. If they provide candidate mecha-
nisms, they are a contribution; otherwise a curiosity. Often robots
are a hodge-podge of gizmos not easily described formally. Then
the sense of understanding that (often falsely) accompanies a for-
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Figure 1. (Killeen). A frame for robots. The success of a robot
model depends on correspondence with the function of the target
system. It embodies mechanisms that can serve as hypotheses con-
cerning those in the target system. By identifying the inputs/ trig-
gers necessary for the function, it clarifies a central question of
psychology – What is the stimulus? As a semblance of the target
system it is more susceptible to syntactic models than is the tar-
get.
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mal model is compromised. That a robot passes a Turing test is to
claim no more than that x 5 y, without assigning values or confi-
dence intervals to the variables.

Model husbands. Different people need different types of
models: One woman’s model husband is another’s model bore. 
Robots underscore the physical constraints and candidate work-
arounds of target systems. Robots cannot replace syntactic mod-
els; but they can instantiate them, as a slide rule does the loga-
rithm, lending credibility. Construction under constraint clarifies
the constraints. Nature’s prominent coping strategy is repurpos-
ing, which generates a path-dependency in mechanisms that is sel-
dom on the agenda of a bioroboticist. Why swim so differently
than fishes (unless the targets are marine mammals that found
their way back), build routes of innervation so circuitous (unless
the organ drifted over generations), egg retrieval so awkward (un-
less gulls can’t infer “my wing could do it better”), males so often
profligate? Biological plausibility depends not only on the ma-
chinery of wetware, but also on its epigenetic provenance. All lab-
oratories should have the query “What is the question?” posted on
their wall, and all modelers should answer it before being given
the keys to the computer, or to the foundry. The answer is nego-
tiable; but must be stated and addressed if tinkering is to amount
to science.

What robots are good for. Comprehension of a target system re-
quires understanding each of the four causes: What makes it go,
what it does, how it does it, and how to talk about it. The goal of
science is to reduce the hypothesis spaces for those causes. Suc-
cessful robots are a triumph of function; their doing improves one
aspect of our knowing. Constraints – physical, biological, or epige-
netic, – reduce the solution spaces for mechanisms. Subsumption
architectures provide a complementary demonstration that com-
plex machinery may be unnecessary for the function. Robots en-
force a parsimony on all other attempts to model a target system.
What robots are specially good for is sharpening Ockham’s razor.

Models are better than their theory

Rolf Kötter
C. & O. Vogt Brain Research Institute and Institute of Anatomy II, Heinrich
Heine University, D-40225 Düsseldorf, Germany.
rk@hirn.uni-duesseldorf.de http ://www.hirn.uni-duesseldorf.de/rk

Abstract: As modelling becomes a popular approach in the study of bio-
logical systems it is necessary to clarify its concepts and dimensions. This
helps to characterize and to distinguish models but cannot establish their
quality. The virtue of a model depends on the insight gained in respect to
a specific scientific question, and it is hard to measure this with a theory.

Modelling plays an important role in our conceptualisation of the
world and has a long tradition in physical science. In biology, by
contrast, the reputation of modelling and models is poor: working
hard to unravel highly complex systems, we do not want the facts
to be confounded with meta-data, simplistic approximations, and
speculations. Thus, if models are necessary – and there is evidence
that we rely on them not only for understanding complex systems,
– then we need criteria that allow us to objectively assess the qual-
ity of models and to progress more surely towards better ones.

In trying to assess the “model muddle,” it is useful to clarify the
terminology and the general procedure: The process of modelling
involves that “we theorise that a system is of type T, and construct
an analogous system to T, to see if it behaves like the target sys-
tem” (Chan & Tidwell 1993). It has to be realised, however, that
the term model has been ascribed to different steps in this process
(preferably to the theory). On this basis, models can be classified,
and there have been many suggestions in the past as to the num-
ber and names of their classificatory dimensions. Barbara Webb
describes seven dimensions, which admittedly are not completely
orthogonal, but are very useful as a reference frame for compar-

ing models more easily and putting them in perspective. Follow-
ing the dimensions of “biological relevance,” “level,” and “gener-
ality,” it is the dimension of “abstraction” which seems most prone
to confusion. Being referred to as “detail” in Figure 2, most of
Webb’s discussion points to “simplification” as the appropriate
term, if it were not for the unclear distinction in this dimension
between “simplification” and “idealisation” when comparing ro-
bots to simulations later in section 4.4. Furthermore, this section
lacks reference to the notion of a “minimal model” as the simplest
model that still adequately represents a certain hypothetical
mechanism. A well-known example is the reduction of Traub’s
model (Traub et al. 1991) of hippocampal cells by Pinsky and
Rinzel (1994). Adding “structural accuracy,” “behavioural match,”
and implementation “medium,” the author makes an important
contribution by disentangling much of the confusion and by lay-
ing out a fairly sophisticated repertoire of distinctions for classify-
ing models in biology, be they robots or computer simulations. An-
other important dimension appears to be the degree of integration
among conceptual levels: While it is commonplace to emphasise
the multi-level organisation of biological organisms, most models
address processes only at a single level, for example, biochemical,
neuronal, population, or functional module. It is easy to see how
this limitation arises during the modelling process from favourite
ways of thinking and the application of particular mathematical
tools and their implementations. Whether these levels are simi-
larly independent in real biological systems is an interesting ques-
tion – if not, this might lead to radically different model architec-
tures both for computer programmes and robots.

None of this discussion, however, answers the question whether
robots can make good models of biological behaviour. The litera-
ture is full of unproven claims about what is a good feature – and
equally blunt statements to the opposite. For example, the amount
of detail to be included in a model ranges from the austerity of the
“minimal model” to as much detail as possible, if not the precise
copy of the real system. Even from the strongest reiterated argu-
ment, namely, that robots can make good models of animals “by
working on real problems in real environments,” the virtue of bio-
robotics does not follow. None of the seven model dimensions dis-
tinguishes good from bad. What they do is to collectively provide
a multi-dimensional classification that helps to identify the char-
acteristics of bio-robotics and to distinguish them from other mod-
elling approaches. In this sense, the title of the target article is mis-
leading: it begs the question. However, this article raises a far
more general and important point: Can the quality of models in
biology be objectively assessed and thereby be systematically im-
proved? The answer is also indicated: A model is good if it pro-
vides insight and helps to gain knowledge, ideally (but certainly
not exclusively) by behaving like the target system. Knowledge
may be gained independently of whether it is a model of (empha-
sizing simulation technology), for (taking theory as a source of ex-
planation), or on (using biology as a source of ideas) vis-à-vis ani-
mals; at the intersection of biology and robotics all directions are
possible, and no single view is exclusively good. Of course, this is
also true for the field of computational neuroscience at the inter-
section of neuroscience, computer science, and other disciplines:
the technology sense, the source sense, and the target sense are
all valid views but none of them is exclusively valid or a sufficient
definition (Kötter 1999). Insights are also observer-dependent:
designers, vendors, and users have very different requirements for
models of the same system.

The virtue of a model has to be judged empirically in the con-
text of the question that the model is designed to answer for the
investigator. Thus, we need good models that address good scien-
tific questions. Developing good models seems more advanced
than the development of a general theory of what makes a model
a good model.
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There is more to biological behavior 
than causation and control

Mark A. Krause
Department of Psychology, University of Texas at Austin, Austin, TX 78712.
krause@psy.utexas

Abstract: Biorobots may model the causation of relatively simple behav-
iors, but many animal behaviorists are concerned with complex cognitive
traits and their evolution. Biorobotics seems limited in its ability to model
cognition and to provide evolutionary explanations. Also, if robots could
model complex traits, such as theory of mind, underdetermination could
be problematic. Underdetermination is also a challenge for comparative
psychologists.

The causes and evolution of behavior are of concern to most ani-
mal behaviorists. Based on Webb’s target article it appears that
many animal behaviorists use biorobots to model the behavior of
animals, and to generate testable hypotheses. The issues I raise
about biorobotics apply mainly to the field of comparative psy-
chology and the evolution of complex cognitive traits. In compar-
ative psychology, if two or more related species perform the same
or very similar behavior, an inference about the evolution of that
behavior can often be made. If a biorobot were made to model
that same behavior, then perhaps the biorobot could be used to
make predictions of the behavior of several species. In addition to
studying (and comparing) the behavior of animals, comparative
psychologists are interested in determining the underlying causes
of behavior. However, under certain circumstances it can be erro-
neous to assume an identical cause for a behavior exhibited by two
or more species. Furthermore, identifying the cause of behavior
influences the evolutionary interpretation of the behavior. Webb
acknowledges the controversy surrounding reasoning by analogy
(underdetermination). However, she does not elaborate much on
this important concern.

Can robots make good models of animals? This is a focal ques-
tion of Webb’s article. A complete explanation of animal behavior
requires an evolutionary account. Cladistics is a common method
used to delineate the evolutionary history of behavior. In this case,
real animals make the best “models” of other real animals. How-
ever, even such comparisons among living species sometimes fall
short of providing adequate explanations of the causes of behav-
ior. For example, there is ongoing debate over whether nonhuman
species possess higher order cognitive abilities such as a “theory
of mind.” Nonhuman species may behave as if they reason about
the mental states of others, but arguments by analogy based on
comparisons among living species (or biorobots) may result in a
faulty evolutionary interpretation.

If a robot were designed to follow the eye gaze direction of an-
other species, and appeared to understand the relationship be-
tween seeing and knowing, then it could be inferred that the ro-
bot models how a living species reasons about the mental states of
others. Chimpanzees are sensitive to the eye gaze direction of oth-
ers, and in captivity they are known to use pointing in conjunction
with eye gaze alternation between a human and a referent (Krause
1997; Leavens et al. 1996). Thus, at a behavioral level, it appears
that chimpanzees infer something about the mental states of oth-
ers, as pointing and the establishment and manipulation of joint
visual attention indicate the presence of a “theory of mind.” How-
ever, the evidence that chimpanzees have a theory of mind is in-
complete and highly ambiguous (Heyes 1998). It may be that
chimpanzees in fact do not possess a theory of mind, despite the
fact that their pointing and eye gaze behavior often appear so sim-
ilar to that of humans. Based on some critical experiments testing
how chimpanzees use (or do not use) visual attention during com-
munication, it appears that they in fact do not possess a theory of
mind (Povinelli et al. 2000). Now consider what would happen if
a robot was designed to follow the eye gaze direction of another
species, and if, based on the robot’s behavior, it appeared to un-
derstand the relationship between seeing and knowing. Among

other conclusions, the robot’s behavior would seem to indicate an
understanding of the mental states of others. In this instance, us-
ing a robot to model the pointing and joint attention behavior of
chimpanzees or humans would not resolve the controversy if the
robot simply mimicked the behavior of either species. In many
cases, it seems unlikely that a robot could tell us anything we do
not already know or could not answer with experiments on live an-
imals.

As another example comparing remotely related species, hu-
man children dress up their dolls and talk to things they know will
not answer; they “animate” their own worlds with creative imagi-
nation. In a similar fashion, domestic cats are known for their
propensity to treat inanimate objects as though they were prey.
Common sense suggests that pretense underlies both examples,
but pretense is probably an over-interpretation of the cat’s behav-
ior. More than likely, the human child and the cat have come upon
similar behavioral solutions to different problems. A robot con-
structed to “animate” its world probably would not explain the
evolutionary differences that underlie human and nonhuman be-
havior.

In comparative psychology and ethology, misinterpreting a be-
havior as homologous is avoided by examining phylogeny, care-
fully testing adaptation, and by closely exploring the underlying
mechanisms controlling a behavior. When these steps are taken in
the comparison of species, the interpretation of the causal mech-
anisms of behavior may differ. Arguments by analogy have the al-
lure of common sense, but they can lead to the misinterpretation
of data. This is an issue for scientists studying animal behavior, and
therefore one for people working in biorobotics. The field of
biorobotics has considerable promise and I hope that it will con-
tinue to flourish and generate hypotheses. However, Webb should
further address this “argument by analogy” problem with regard
to comparisons made between the behavior of robots and organ-
isms. Would a biorobot programmed to “animate” its world be
more like a cat or a child? Would it have a theory of mind or not?
Can biorobots really answer questions about behavioral evolu-
tion? Furthermore, of what use are biorobots to comparative psy-
chologists studying complex cognitive traits?

Like the perfect animal, there’s no such 
thing as the perfect institution

Susanne Lohmann
Department of Political Science, University of California, Los Angeles, Los
Angeles, CA 90077. lohmann@ucla.edu
www.polisci.ucla.edu/faculty/lohmann/

Abstract: Models of biological and political systems share in common an
irreconcilable tension. They must extract the essential features of the sys-
tem to make its workings comprehensible to the human observer, and yet
the omitted underbrush is essential to the workings of the system. A good
model accommodates both the workings of the system and the cognitive
makeup of the observer.

Why build a robot to model an animal? At first blush, the idea of
developing a physical robot model to represent a biological sen-
sorimotor system seems bizarre. How can a clunky mechanical ro-
bot possibly tell us something about a living breathing animal?
And if we need a simplified account of what makes an animal tick,
why not a mathematical model on paper, or a computer simula-
tion – why the concreteness and messiness of an engineering con-
traption?

To explore the “why a robot” question, I draw an analogy be-
tween the study of biological and political systems.1 Examples of
biological systems are ant colonies and bat sonar. Examples of po-
litical systems are the United States Congress and the first-past-
the-post system used for elections in the United Kingdom.2

Political and biological systems are alike in several respects.
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First, there is a biological component to the workings of political
institutions because they are “inhabited” by human beings. Thus,
the functioning of a political institution depends at least in part on
how it interacts with the human body and brain. Trivially, an in-
stitution that does not respect the human need for sleep is not 
going to last for long. Less trivially, well-functioning institutions
respect the quirks of human cognition, emotion, and moral rea-
soning. They rely on formal structures (simple majority rule, fed-
eralism, written constitutions) and informal modes of interaction
(culture, ideology, morale, and leadership). They take into account
limitations on the human ability to pay attention (what do people
naturally attend to? what is the human attention span?). They pan-
der to the human desire for narrative (people tend to work hard
for institutions that have a vision and give them a sense of pur-
pose). Great institutions make productive use of the human
propensity for factionalism (people tend to form clusters, and they
cooperate within and compete across clusters; people also seem to
have a close-to-infinite capacity to form clusters-within-clusters).

Second, political institutions are complex systems with emer-
gent properties. Just like the brain possesses consciousness and yet
one cannot find the seat of consciousness in it, a political institu-
tion can contribute to economic stability and growth even though
its internal world consists of a Kafkaesque bureaucracy obsessed
with partisan squabbles and prone to petty corruption. We have
theories connecting the internal world of an institution to its ag-
gregate performance. Even so, there is something magical about
well-performing institutions, which is to say that our theories are
thin simplifications.

Third, political institutions evolve in conflict with their envi-
ronment. Some institutions emerge bottom up as a result of the
decentralized actions of individuals. In a process comparable to
annealing, people’s interactions become increasingly structured
until a complex institution crystallizes out of the mess.3 Other in-
stitutions are designed from scratch by political actors, but they
evolve over time as they accommodate the political pressures of
disaffected individuals and groups or change their structure to
better cope with environmental pressures – or they break down
and are replaced by other institutions that are better able to stand
the political heat.

So what characterizes a good model of political institutions? For
starters, we need to understand why we need a model in the first
place. Why can’t we just “see and understand” an institution the
way it really works? After all, the human brain is capable of seeing
and understanding very complex phenomena. Indeed, in many
cases (recognizing faces, making sense of gossip) we only realized
how complex these phenomena are after our man-made comput-
ers choked over analyzing them.

This is where evolutionary psychology comes in. The social na-
ture of the human brain was shaped in a hunter-gatherer envi-
ronment, roughly 30,000 to 300,000 years ago. People lived to-
gether in small groups and spent a lot of time gossiping with and
about each other. It is not all that surprising that human beings are
good at extracting subtle cues from facial expressions or reading
other minds (“if I say this she will think he left unsaid that . . . ”).
Fortunately or not, there was nothing even remotely resembling
the United States Congress floating around in the hunter-gatherer
environment. As a result, our brain is poorly equipped to reason
about the workings of the United States Congress (or bat sonar for
that matter).

The purpose of a model is to take a complex system that our
brain cannot comprehend, boil it down to its essential features,
and thereby make it transparent. This is where we run into a snag.
The underbrush we omit as non-essential is in fact essential to the
workings of the system. The thin simplification that is our model
would drop down dead if it were forced to confront the environ-
ment in which the true complex system survives and thrives. What
a good model does is to reconcile as best as it can an irreconcilable
tension – it accommodates both the workings of the system (it pro-
vides a decent approximation as measured by some yardstick of

usefulness) and the cognitive makeup of the human observer (it is
illuminating to us).

When it comes to the cognitive makeup of the human observer,
there are human universals and then there are cultural and indi-
vidual-specific differences. Cultural differences include differ-
ences in “seeing and believing” across scientific disciplines and
subfields – indeed, the process of becoming an expert through
graduate training and mentorship can be thought of as a process
of getting brainwashed into slicing up the world in a certain way
and being blind (and, interestingly, hostile) to other ways of slic-
ing up the world. As a result, different disciplines and subfields
come up with different models of complex phenomena.

Indeed, the lack of disagreement carries over to meta-level de-
bate about the purpose and workings of the scientific enterprise.
When scientists self-reflect, they come up with competing and
partially contradictory models of “what is a model” and “what
makes for a good model.” And this is good so. If scientific progress
occurs, it is because the scientific enterprise is in sync with the
cognitive makeup of its human inhabitants – their diversity and
their propensity for forming factions and factions-within-factions.

NOTES
1. The ideas developed in this commentary are drawn from the author’s

published work (e.g., Lohmann 2000).
2. In a given district, the candidate who gets the most votes becomes

Member of Parliament regardless of whether he or she is supported by
more than 50% of the voters. In the House of Commons, the party with
the most seats forms the government regardless of whether it has won a
majority of seats.

3. The concept of annealing comes out of the thermodynamics of how
liquids freeze and crystallize or metals cool and anneal. At high tempera-
tures, the molecules of a liquid metal move around freely. If the liquid is
cooled slowly, the atoms line up to form a pure crystal that is completely
regular and represents the state of minimum energy for the system. If the
liquid is cooled quickly, it does not reach the minimum energy state but
instead gets stuck in a higher energy state. A process that allows the mol-
ecules to move around and then gradually quenches them has certain op-
timality properties.

How building physical models can reduce
and guide the abstraction of nature

Malcolm A. MacIver
Division of Engineering and Applied Science & Computation and Neural
Systems Program, 104–44, California Institute of Technology, Pasadena, CA
91125. maciver@robotics.caltech.edu
http ://robotics.caltech.edu/~maciver

Abstract: Animals detect and acquire resources through a sequence of
shape changes. This process is tightly coupled to the sensory and me-
chanical ecology of the animal. Building physical models allow us to pre-
scind from modeling these aspects of the environment, which may not yet
be described or suitably abstracted. The significance of this hybrid of phys-
ical modeling and experimentation to the acquisition of scientific knowl-
edge is discussed.

The sparsity of resources within a mobile animal’s domain com-
pels a certain logic, one that all energy-consuming autonomous
agents must follow. Resources must be detected, and behavioral
programs engaged that terminate in the acquisition of those re-
sources. In carrying out this imperative of their continued exis-
tence, animals exert changes in their geometric configuration in
space (in brief, shape) to several ends. These include: (1) for sens-
ing: shape changing to enhance the quality of information from its
sensor arrays (e.g., bats manipulating their pinnae position during
echolocation; dogs bringing their snouts to the substrate to follow
a trail); (2) for locomotion: shape changing to undergo net move-
ment, typically toward the detected resource (e.g., a fish bending
its body to swim forward; a biped extending a leg to walk forward);
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3) for physical coupling: shape changing to eat or grasp the re-
source (e.g., depression of the lower jaw of fish to create negative
buccal pressure for prey capture; bats flipping the tail membrane
up to bring an insect to their mouth).

Animals exhibit an astonishing sophistication in their manipu-
lation of the mechanical properties of their world to achieve these
ends. For example, shape changing for sensing in electric fish can
be seen in rolling behavior following prey detection (MacIver et
al. 2001). This behavior centers the fish’s top edge – a region of
high sensor density – under the prey; allows the fish to approach
the prey by slicing its narrowest cross-section through the water,
thereby minimizing added-mass effects; and may provide a sim-
ple control strategy for reaching the prey by balancing the stimu-
lus between the two sides of its body and ascending the gradient
of sensory signal strength (MacIver et al. 2001; Nelson & MacIver
1999). As described further below, investigations of shape change
for locomotion in insects and fish are demonstrating that these an-
imals utilize phenomena within fluids quite beyond those that we
utilize in our flying and underwater machines, phenomena that we
are still discovering, to say nothing of having a good analytical ap-
proach toward.

Shape changing for resource detection and acquisition is clearly
fundamental to the sensorimotor intelligence of animals that we
so desire to understand. As the examples indicate, these shape
changes are tightly coupled to the sensory and mechanical ecol-
ogy of the animal. Yet, modeling the environment, which animals
have demonstrated an unerring capacity to exploit in ways we are
hardly aware of, let alone capable of simulating accurately, pre-
sents a high obstacle to the integrative computer simulations that
are currently our best shot at understanding these coupled senso-
rimotor processes.

As Webb and others have pointed out (target article, sects. 3.7
& 4.7; Beckers et al. 1996; Flynn & Brooks 1989; Quinn & Es-
penschied 1993), a great advantage of building physical models is
that this allows us to prescind from modeling the undiscovered or
unabstracted aspects of the environment on which the target be-
havior depends. Although Webb’s article is very helpful in clarify-
ing the maze of issues surrounding the building of physical mod-
els, I believe that this key point is one which merits further
elaboration. In what follows, I place the building of physical mod-
els in the broader context of the acquisition of scientific knowl-
edge, inquire into the nature of their contribution to this process,
and briefly describe some recent examples.

Understanding involves abstraction. These abstractions are
expressed in some language for communication and verification.
Mathematics provides one such language, but what follows applies
to abstractions expressed in any language. Suppose we express our
abstractions of some biological phenomenon using the language
of mathematics. The next logical step is to calculate predictions
from these expressions in order to test their fidelity to the phe-
nomenon (in the case of a spoken language, we would use prac-
tices of informal logic to derive verbal predictions). The expres-
sions may need to be approximated to make them computable in
finite memory machines in finite time. The calculated predictions
are compared to empirically obtained observations, and an inter-
woven process of theory adjustment, algorithm development, and
experimental work ensues. Where can building physical models
contribute?

The tragedy of abstraction is that it requires the loss of infor-
mation. Otherwise, we haven’t abstracted. In the process of gen-
erating predictions from abstractions, there will be some predic-
tions that will therefore not be computed; namely, those that rely
upon the information excluded from our abstractions, or lost in the
approximations of those abstractions required by computational
expediency. I will use the phrase “abstraction load” (in analogy to
“cognitive load”) to refer to the work needed to obtain the ab-
stractions and computational methods that will generate the ob-
servations we have failed to compute.

Building physical models has the advantage of reducing the po-

tentially insurmountable abstraction load associated with com-
puting all the aspects of the environment on which the target phe-
nomenon depends (where “environment” refers to any aspect ex-
ternal to the phenomenon we are trying to abstract). To simulate
the phenomenon adequately, this work would have to be done; but
building the object and letting reality supply the physics obviates
the need to do some of this work. The crucial point is, we haven’t
thereby given up the game completely – we are neither pinned
into the muck and goo of pure experimentation, nor caged in the
assumption-permeated world of pure simulation, but find our-
selves at some interesting halfway point.

For example, following similar work by McGeer, Ruina and col-
leagues developed computational models of a “passive walker” –
a walker that has a human-like bipedal gait down inclined planes
without actuation or control. The simulations predicted that the
walker would not be stable, but it was built in order to test some
other issues. To their surprise, the model did walk (Coleman &
Ruina 1998). The functioning of the physical model directed the
development of a simple quantitative model to explain its stability
(Coleman et al. 2001). Similarly, in recent work on fish swimming
and insect flying, a number of fluid phenomena have either been
discovered or made more observable as a result of the use of ro-
botic devices that approximate the movement of these animals
(Ahlborn et al. 1997; Bandyopadhyay et al. 2000; Barrett et al.
1999; Birch & Dickinson 2001; Dickinson et al. 1999).

In allowing the full complexity of the environment to work on
what could be called “reduced robotic preparations,” this research
is cracking open the black box of complex deformable-body and
fluid dynamics phenomena to new theoretical advances. The epis-
temic accessibility afforded by building these robotic devices is
analogous to that obtained by traditional instruments such as the
microscope and telescope. The building of physical models not
only reduces abstraction load, but in illuminating that part of na-
ture we most urgently need to abstract in order to account for a
phenomenon, it provides a saliency filter for the immense richness
of opportunities for abstraction effort that arise at every turn in the
course of experimental work.

When robots fail: The complex processes 
of learning and development

Ludovic Marina and Olivier Oullierb
aSport, Performance and Health Laboratory, University of Montpellier 1, 
F-34000 Montpellier, France; bCenter for Complex Systems and Brain
Sciences, Florida Atlantic University, Boca Raton, FL 33431.
l.marin@staps.univ-montp1.fr oullier@walt.ccs.fau.edu
http ://oullier.free.fr

Abstract: Although robots can contribute to the understanding of biolog-
ical behavior, they fail to model the processes by which humans cope with
their environment. Both development and learning are characterized by
complex relationships that require constant modification. Given present
technology, robots can only model behaviors in specific situations and dur-
ing discrete stages. Robots cannot master the complex relationships that
are the hallmark of human behavior.

In her article, Webb offers a convincing argument for instances in
which robots can be good models for understanding biological be-
havior. In her account, mechanical models, like those used in re-
search on other animals, can similarly help researchers gain in-
sight into human behavior. Robots offer experimental advantages
in certain situations because robots can be programmed, and even
demonstrate very simple learning strategies within a given envi-
ronment and context. For example, robots can be used as “stand-
ins” for humans in experimental situations that are too dangerous
for live subjects (e.g., removing the primer of a rocket). Using ro-
bots eliminates emotions like fear or anxiety that affect experi-
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mental outcome. This said, however, we are not convinced that
present technology allows mechanical models of humans to pro-
duce one of the most fundamental hallmarks of behavior – adap-
tation to changes and variations in environmental constraints.

Behavior is affected by both developmental evolution (biologi-
cal and physiological changes) and learning, or discovering new
ways to cope with novel situations in the environment. These vari-
ables must be perceived and processed together in order for an
appropriate behavior/response to result. As we will attempt to il-
lustrate, the on-line nature of these interactions and the vast
amount of variability and complexity within changes of a physio-
logical or an environmental nature are impossible to capture with
a mathematical model.

There is no better illustration of variability in behavior than that
of babies learning to perform new skills for the first time. Reach-
ing, sitting, crawling, grasping, walking, and throwing are just a
few of the plethora of skills babies master in their first few years
of life. One major characteristic of these early developmental
milestones is that they are manifested in a nonlinear process.
We’ve all seen new parents boast that their baby has taken steps
and can walk, even though baby still prefers crawling as a means
of getting from point A to B. After the very first steps that a baby
takes, it is often a few weeks or even months before the baby is ac-
tually described to others as a “walker.” During this time, the baby
may take ten steps on one day, zero steps on the following two
days, and five steps a week later. Motivation for locomotion, as well
as the baby’s physical ability to put one foot in front of the other
in a given moment both factor into whether the new walker will
actually decide to walk rather than crawl, scoot, roll, or slide.
Given all this variability, we are not convinced that a robot can take
into account the process by which physiological change and con-
traints in the environment relate to and directly affect each other.

Learning a new skill requires that physiological and biological
properties are modified with respect to the constraints of the en-
vironment and to the task. Although it is possible, as Webb herself
points out, for robots to learn through conditioning, we argue that
human learning is fortunately much more complex than simple
conditioning. Newell (1986) showed that learning all new skills is
based on the interactions among the intrinsic properties of the
learner him/herself (morphology, muscle), the environment, and
the task constraints. For example, when a gymnast learns a new
and complex tumbling skill, he/she must first resolve the rela-
tionship between individual and environmental constraints. Fur-
thermore, gymnasts must learn how to constantly modify this 
relationship with respect to psychological demands like fear, fa-
tigue, and motivation. The interaction of these multiple con-
straints is very difficult to reproduce in a model because all inter-
actions must first be identified. If interaction is not the sum of its
parts but, in fact, an original entity (Kelso 1995; Kofka 1935), how
is it possible to program and model an interaction without defin-
ing, or at the very least identifying each constraint? We maintain
that the various elements that contribute to the learning process
cannot be gathered in one general model that captures every vari-
ation. It is only possible to model the behavior of one given inter-
action in a specific situation at a given moment with given con-
straints. As is the case in development, mechanical models are
more likely the reflection of one very specific instance (a “snap-
shot” of a special stage in learning) rather than a model of the
learning processes.

We maintain that existing experimental methods remain the
best way to truly address the questions of human development in
the contexts of learning and development. We think that it will re-
main so, as long as robots are created as computer analogy. Any
model for biological behavior must take into account the various
interactions that are continually present in learning and devel-
opment. Some interesting studies have already moved in this di-
rection (Schöner et al. 1995). The new generation of robots, the
so-called “animats,” are autonomous systems exhibiting self-orga-
nizing properties (Kodjabachian & Meyer 1995; Meyer & Wilson

1991). Based on neural network modeling, these robots are non-
linear systems that can learn from their environment and lead to
“the emergence of interesting and ecologically valid behaviors”
(Damper et al. 2000). We expect that future generations of robots
will make further progress in accurately representing the pro-
cesses involved in nonlinear long term change.
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Abstract: In agreement with the target article, we would like to point out
a few aspects related to embodiment which further support the position
of biorobotics. We argue that, especially when complex systems are con-
sidered, modeling through a physical implementation can provide hints to
comprehend the whole picture behind the specific set of experimental
data.

Beside the many examples described in the target article, we ar-
gue that one of the possible uses of biorobotics is for the study of
complex systems with the aim of elucidating general principles
rather than perfectly simulating them in every detail. We agree
that the most effective research to date has been devoted to the
analysis and simulation of specific subsystems (e.g., chemotaxis in
C. Elegans, locomotion in insects, simple visual motion detectors,
etc.), and consequently it addresses rather specific biological
questions. On the other hand, the real potentiality lies mostly in
the possibility of further analyzing complexity in general terms by,
for instance, devising experiments that could not be carried out on
real biological systems for various reasons. One possibility we pur-
sued is that of investigating development of sensori-motor coordi-
nation and cognition: in particular, the first year of life (Metta
2000; Sandini et al. 1997).

The main hypothesis we put forward is that development can
be regarded as controlling the complexity of the learner (Metta
2000). We proposed development in contrast to the classical mod-
ular approach, not only as a source of inspiration, but rather, as a
possible design alternative. The criticism we have against the
modular approach, especially in engineering, is that, very often, to
make the problems tractable, complex systems are divided in
small parts, which are then analyzed in isolation. Complexity is ad-
dressed by breaking the system into components. This has been
successful so far but it has also hit its own limits (Brooks 2001).
Most of the time large-scale system integration has either failed or
has been successful only at the expense of generality and adapta-
tion.

A different approach is taken by biological systems. Newborns,
for example, are already, at birth, an integrated system. Many
“modules” are still non-functional or they function differently
from their “adult” counterpart: neural growth is not completed
(Leary 1992), motor control limited (Konczak et al. 1995), but the
sensorial, motor, and cognitive abilities are nicely matched. Sub-
modules develop harmonically, resulting in a system whose com-
ponents always fit one to another during growth. Adaptation is in-
herent in the very fabric of the system: we can observe the general
tendency of a smooth shift from simpler to more complicated.
Limitations, such as poor sensory resolution, are thought to be an
advantage rather than a drawback (Turkewitz & Kenny 1982).
Newborns are maximally efficient in collecting data (making new
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experiences) and their behaviors are optimized for learning rather
than simply for efficiency in absolute terms; even “negative” as-
pects such as noise contribute instead to the long-term perfor-
mance by supporting exploratory behaviors. Examples of such
simple early behaviors are motor reflexes that, although clearly not
that much adaptive, provide the simplest controller yet are able to
generate useful sensori-motor synergies.

A more fundamental difference – and concurrently, a powerful
constraint posed on the developing agent – is that the training data
does not come for free: gathering information always has a cost.
Getting representative data of the complete learning problem in
a vast state space (e.g., imagine a body with many degrees of free-
dom and a diverse sensory system) can take a very long time – the
learner has to visit and try out too many different configurations
in this space. The agent cannot devote all its efforts to exploring
the environment because otherwise no task would be ever
achieved. This issue has been called the exploration-exploitation
dilemma (Sutton & Barto 1998). Any real learning system has to
face this problem and adopt strategies to cope with it.

It is clear that casting biorobotics in this “ecological” context
shifts the learning problem towards that of collecting the training
data. This is to say that we have to deal with action in the first
place, and the very capacity to learn involves finding representa-
tive data without incurring severe penalties in terms of basic dri-
ves (e.g., feeding, mating, or artificial versions of them). Further,
the way exploration is performed – the quality of training – de-
pends strongly on how the system acts. This is also why perception
is doomed to be derived from actions. The capacity of categoriza-
tion emerges out of the sensori-motor coordination patterns
(Pfeifer & Scheier 1998).

On a more practical basis, this suggests that action is at the foun-
dation of more cognitive functions, such as categorization. Devel-
opmentally, if action has to be a prerequisite of perception, we
should observe a different developmental progression of the mo-
tor control versus the perceptual abilities. This question has been
investigated, for example, by Kovacs (2000) who provided sup-
porting evidence in this direction. Along the same line, and, in our
view, supporting this stricter integration of motor and perceptual
abilities are the studies of Milner and Goodale (1995) and Jean-
nerod (1997). The more recent discovery of mirror neurons is
(Fadiga et al. 2000; Rizzolatti 1996) believed to provide another
piece of the link between action and perception. In short, it seems
plausible that motor information is needed to perform visual
recognition of observed actions. In other words, our ability to rec-
ognize an action is based on the activation of the same neurons
used to actually perform it. For this reason a certain similarity in
terms of motor abilities and kinematics between the observer and
the experimenter is required.

In robotics, theories where action had a sort of primacy have
been already proposed in the past; for example, the active vision
or purposive vision paradigms (Aloimonos 1990; Rajcsy 1985) but,
although we generally agree with them, action was eventually ex-
ploited a little. It was never a fundamental component in the sense
we are proposing here.

All these considerations point toward embodiment and adapta-
tion as fundamental characteristics of intelligent living systems.
Firstly, action allows the agent (either biological or artificial) to
gather “learning information” efficiently. Secondly, this very ca-
pacity of acting can indeed facilitate more fundamental cognitive
tasks such as categorization in cases where an external teacher (as
in supervised learning) is not necessarily available. Finally, as in-
terpretation of mirror neurons seems to suggest, a body – and pos-
sibly a body with a certain kinematics – is needed to recognize ac-
tions and communicate properly with others.

In summary, we suggest that if the aim is to investigate complex
systems (as the brain certainly is), biorobotics might provide a
complementary view on some aspects and, in particular, realisti-
cally take into account the agent-environment interaction. It 
can be regarded as another tool, similar to what tools like Matlab

and systems theory are for the simulation of biological control sys-
tems.
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Robots aren’t the only physical models
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Abstract: Webb compares robots to other behavior models in a novel
space, but neglects significant portions of this space. The article’s analysis
of models would have been strengthened by including a broader coverage
of physically embodied models and of models of social behavior. Never-
theless, Webb is correct to claim that robot construction will contribute to
understanding behavior.

The title of the target article suggested that the article would dis-
cuss and ultimately defend robots as models of biological behav-
ior. This enterprise ought to be relatively uncontroversial. The
abundance of examples, both cited in the text and listed in the
table, speak for themselves. The article also presents a seven-
dimensional space for describing models. However, several types
of physical models, relevant to the study of behavior, are not dis-
cussed in connection with this space. The omission of these mod-
els is significant, as they point to difficulties in Webb’s definitions
of robots and of models.

There is much to agree with in this article. Webb usefully dis-
tinguishes what she calls biorobots from other types of biologically
motivated robot research. She has elsewhere (Webb 2000) made
a more general case for the use of robots in the study of behavior,
so I read this article expecting a comparison of robots to other ap-
proaches to modeling behavior. Although the article presented
many examples of robotic models and comparisons with other in-
formation processing models, there was very little discussion of
other physical models.

The absence of any mention of Michelsen et al.’s (1992) me-
chanical dancing bee was particularly surprising as it stands as one
of the best known examples of using robots to study social behav-
ior. If Webb felt that this device was something less than a robot,
it would have made an excellent counterexample to buttress the
informal notion of “robotic” used in section 2.4. Webb never
makes clear what makes a mechanical device robotic.

In addition to the bee, two other models serve to illustrate the
point. The first is a die-cast replica of a lizard such as has been used
in studies of heat absorption and loss in physiological ecology. As
sunlight and the surrounding air interact with the surface of the
model, its internal temperature does change in response to its en-
vironment. Although these changes are not “behavior” in and of
themselves, they represent events that elicit thermoregulatory be-
haviors. The second example is a mount of a predator, such as the
hawk used by Lima and Bednekoff (1999) in their studies of an-
tipredatory vigilance in juncos. The hawk does not directly re-
spond to the behavior of the juncos, it simply slides down a
monofilament cable towards an individual focal junco.

These three models (bee, lizard, and hawk) share a physical
medium. By virtue of their physical implementation, they all tell us
something about the interaction of environment and behavior, ex-
actly as the best robot models do. Each is relevant to at least one par-
ticular system, though the lizard and hawk models also generalize to

Commentary/Webb: Can robots make good models of biological behaviour?

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6 1069
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X01000127
Downloaded from https://www.cambridge.org/core. Ecole Polytechnique Fédérale de Lausanne, on 18 Feb 2022 at 10:34:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X01000127
https://www.cambridge.org/core


other terrestrial animals and aerial predators respectively. In the case
of the bee and hawk, the subject animals, rather than the experi-
menter, decide the quality of match. Together, these examples sug-
gest that robotics represents an evolutionary advance in the study of
behavior as usual, rather than a fundamentally new approach. The
greater dissimilarity seems to be between these models and the com-
putational/mathematical models Webb frequently mentions.

Webb rightly observed that robots, like other physical models,
can tell us something new about their environment. In doing so,
they cease to be pure models of their “source” and also serve as
instruments for detecting and changing properties of that envi-
ronment. Although Webb hints at this dual role for robots, its con-
sequences in relation to her modeling framework were never ex-
amined.

The continued evolution of robot hardware promises a contin-
uing stream of interesting robot models across the range of animal
taxa. Having both studied behavior and coded robot software in
the past, articles like this motivate me to find out more about re-
cent advances in appropriate hardware. Although the introduction
of robots represents merely an evolutionary advance in existing
methods for studying behavior, contact with and interest from the
robotics community should provide a long overdue rejuvenation
for classical ethology.

Finally, robots as models in specific systems suggest a role for
robots in comparative studies of mechanism. If two target species
are phylogenetically close, a robot implementing the behavior of
one ought to be easy to convert to a model of the other. Violations
of this expectation suggest that either something is wrong with the
model or something special happened in the evolutionary history
of one of the species. We currently lack good models for evolu-
tionary change in behavior. Comparing model implementations
may provide insight in cases where comparing descriptions or
measurements of behavior do not do so.
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Differentiating robotic behavior and artificial
intelligence from animal behavior 
and biological intelligence: 
Testing structural accuracy
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Abstract: We emphasize the feature of Webb’s presentation that bears
most directly on contemporary research with real animals. Many neuro-
science modelers erroneously conclude that a model that performs like an
animal must have achieved this goal through processes analogous with
those used by the animal. A simulation failure justifies rejecting a model,
but success does not justify acceptance. However, an important benefit of
models, successful or otherwise, is to stimulate new research.

Webb provides an illuminating and commendably comprehensive
analysis of the nature and role of models in the study of behavior,
and for this we are grateful. However, unlike Webb, we are not
meta-modelers; we are part of the infantry that uses models to do
experimental science with live animals. Here we focus on what
Webb calls “structural accuracy” (Zeigler’s [1976] “structural va-
lidity”), that is, how well a model (including one implemented in
a robot) represents the actual mechanisms underlying the target
behavior. Toward assessing structural validity, we note that com-
parison of behavioral data to predictions of a behavioral model can
provide a basis for rejection of the model. However, a relatively
successful prediction of the model does not constitute grounds for

accepting the model. Real world behavior (data) can be described
by any of an infinite set of equations that predict behavior (de-
pendent variable) on the basis of assorted environmental and ge-
netic factors (independent variables). However good the fit to the
data, these equations are no more than descriptive unless the var-
ious terms have psychological meaning. For example, the terms of
long Fourier series or exponential series ordinarily lack psycho-
logical meaning. Such series constitute no more than curve fitting,
which is not to say that all curve fitting is undesirable. Initial curve
fitting sometimes leads to psychologically meaningful processes
being attached to the terms and parameters of the equation fit to
the data. Moreover, curve fitting can sometimes have useful pre-
dictive value even if it lacks explanatory value. But curve fitting,
intentional or serendipitous, rarely illuminates underlying psy-
chological or neurophysiological processes. Restated as a simple
example, consider a crate with four rows of three bottles. The
number of bottles can be ascertained by simple counting, multi-
plying three bottles by four rows, or rotating the crate 90 degrees
and multiplying four bottles by three rows. We could even add the
total numbers of bottle tops and bottoms and then divide by two.
All of these approaches correctly yield twelve bottles, but provide
no insight concerning how a specific evolved, experienced, real
person would actually determine the number of bottles.

We must be careful with the once widely held assumption that
“the study of autonomous robots was analogous to the study of an-
imal behaviour” (Dean 1998, as cited by Webb). At the level of in-
vestigation, they are in some ways analogous. But an analogy be-
tween them does not mean a correspondence between them in
underlying process. Autonomous robots are relevant for re-
searchers of natural sciences if they implement a theory based on
the study of natural-living organisms. Engineers can build an infi-
nite array of autonomous robots with very few analogies with the
processes within natural organisms. Webb is aware of and briefly
speaks to this issue. Although a functional robot is hardly evidence
of a successful model, the problems in implementing a model
through a robot surely provide an excellent means of detecting in-
completeness within a model.

The ways in which our minds currently work are constrained
not only by our experiential histories, but by our evolutionary his-
tories. Any model of behavior that fails to incorporate these con-
straints will never be successful in modeling real world behavior,
which often is far from optimal as we ordinarily define “optimal.”
Yet, we are at a very primitive stage in our understanding of evo-
lution, and its exploration challenges the traditional laboratory ap-
proach. However, newly developed computer models of evolution
do allow us to examine evolutionary hypotheses. Hence, a partic-
ularly fruitful avenue for modeling at this time is simulation of evo-
lutionary scenarios.

Our knowledge concerning the behavior of biological organ-
isms is currently so incomplete that one primary goal must be to
improve our description of behavior. There are a limitless number
of experiments that we could in principle perform and observa-
tions that might be made toward fleshing out our knowledge of be-
havior. Thus, in our view, a primary goal of a behavioral model at
this time is to guide further research, that is, incite us to perform
an experiment with a living subject that tests a novel hypothesis of
the model. The present models are all incorrect to greater or lesser
degree; the goal is to gain more illuminating data; and these data
will constrain future models which, in turn, will stimulate addi-
tional research. This is not to deny the many other uses of models
(e.g., for engineering purposes) that Webb describes. But for re-
searchers studying live animals, the primary function of models is
to assist the investigator in deciding which experiments to per-
form. It is from these experiments – experiments that often refute
models – that new models are born. This evolution of models is
the stuff of scientific progress. Models that are demonstrably in-
valid can still be relevant (in Webb’s sense of the word) if re-
searchers continue to use them to inspire research, which they do
until a better model comes along. The Rescorla and Wagner
(1972) model is a good example of this.
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Modeling forces scientists to use clearer definitions of variables
and of the algorithms to manipulate those variables in order to
model a system (a living organism, part of it, or a function of it
[e.g., learning]). Thus, one of the advantages of the modeling ap-
proach is that implementation of theories using robots (or com-
puters) could provide us with an explicit and common language
(computational algorithms) to discuss biological models, as well
as, for example, psychological models (e.g., models of learning,
memory, perception, motivation, etc.) Once people learn a com-
mon language, discussion about underlying processes as well as
specific models (and their implementations) is often more fruitful
than prior to the development of a common language. However,
there is a down side to researchers using a common language. A
common language often constrains one’s thinking, thereby in-
hibiting the development of radically new models.

Additionally, robotic implementations and simulations facilitate
top-down and bottom-up connections with other levels of expla-
nations (e.g., neurophysiology [neuroscience], associations analy-
sis, normative analysis, and higher-order cognitive processes 
including decision-making and language). Moreover, such imple-
mentations also facilitate integration within the same level of ex-
planation (e.g., between Pavlovian conditioning and instrumental
conditioning, between acquisition and retrieval processes, and be-
tween learning, memory, perception, attention, motivation, etc.).
Webb briefly discusses some of these relationships between dif-
ferent levels of explanations, but does not consider the potential
of biorobotics to integrate knowledge in the same level of expla-
nation, which is one of the most interesting aspects of this ap-
proach (although perhaps more futuristic).

Webb argues for examination of models in “real” (meaning
“complex”) environments. Surely such testing is necessary to de-
termine ecological validity. But to provide the principles to be
tested in the real world, initial studies in the sterile (ecologically
invalid) laboratory are often essential. Just as models are attempts
at simplifications of animal information processing, so too, labo-
ratory settings can be simplifications of ecological niches.
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Abstract: From the perspective of biological cybernetics, “real world” ro-
bots have no fundamental advantage over computer simulations when
used as models for biological behavior. They can even weaken biological
relevance. From an engineering point of view, however, robots can bene-
fit from solutions found in biological systems. We emphasize the impor-
tance of this distinction and give examples for artificial systems based on
insect biology.

One of the primary goals of biological cybernetics is to find the
control processes and invariances of biological behavior which can
often be represented as formal or mathematical models. A possi-
ble way of testing and evaluating these models is to implement
them in artificial systems such as computer simulations or robots
which reproduce certain aspects of the target system’s behavior.
From this perspective, artificial systems can be a useful contribu-
tion to the understanding of biological findings. From an engi-

neering point of view, however, biological relevance is not impor-
tant. Instead, particular sensor, effector, and control problems
have to be solved. This can be facilitated by applying findings from
biological studies that show how natural organisms accomplish
similar tasks. The following examples address both the modeling
and the engineering aspects of building biologically motivated ar-
tificial systems.

Franz et al. (1998) present a purely vision-based scheme for
learning a topological representation of an open environment, a
so-called view graph. In computer simulations and robot experi-
ments they demonstrate that complex visual exploration and nav-
igation tasks can be performed without using explicit metric rep-
resentations or “mental 3D models” of the environment. Huber et
al. (1999) apply models of the visual processing system of flies to
artificial agents in order to generate appropriate motor signals for
course stabilization, obstacle avoidance, and fixation of stationary
targets. The control algorithms were tested on both a simulated
agent and a mobile robot using visual stimuli comparable to those
in the original experiments with real flies. In the above examples,
computer simulations and robot experiments give comparable re-
sults and are both used to test and support the plausibility of bio-
logical models. At the same time, the robot implementations
demonstrate that the control algorithms derived from these mod-
els can be applied to “real world” engineering problems.

In our view, robots have no fundamental advantage over com-
puter simulations in terms of biological relevance, whereas com-
puter simulations can provide a more accurate representation of
an organism and its environment. We agree with Webb that “com-
puter programs can represent a wider range of possible situations
than we can physically model, but physical models cannot break
the laws of physics.” However, robot implementations are re-
stricted by the available sensor and actuator hardware, which in
most cases differ fundamentally from the biological target system.
As an example, walking or flying insects do not use CCD cameras
as visual sensors or wheels as effectors for locomotion. Building a
robot usually involves considerable engineering efforts in order to
make the system work under these hardware constraints. This
might require adaptations of the sensorimotor processing and sim-
plifications of the robot’s environment in order to match the ca-
pabilities and noise characteristics of the given hardware. Al-
though both the robot and the biological target system move and
behave in the “real world,” that is, both are subject to the laws of
physics and have to cope with effects like noise, friction, and other
external influences, these effects may be totally different in both
systems on account of different hardware for sensors and motors.
Therefore, the mere presence of such effects cannot be used as an
argument for the use of robot models instead of computer simu-
lations.

Idealization, another point in Webb’s criticism of computer sim-
ulations, is in our view possible in both robots and computer sim-
ulations, for example, by using global or external knowledge about
the world. These so-called oracles provide information that is not
directly available to the biological target system in its environ-
ment, such as the position or distance of objects, or idealized op-
tic flow fields as input stimuli. Idealization can be avoided in both
robots and computer simulations by using only information that is
also accessible for the biological target system.

In computer simulations, not only does the organism itself need
to be modeled, but the environment in which it moves and be-
haves also has to be represented in an appropriate way. The rapid
development in computer graphics and virtual reality technology
provides the means to generate photorealistic virtual environ-
ments. The stimuli produced with these techniques have reached
a quality and realism that is even sufficient for studies in human
psychophysics (Bülthoff & van Veen 2001). It is also possible to
make highly realistic simulation models of physical properties of
an agent and its environment, such as motion dynamics, gravity,
friction, or noise in the sensor and motor systems. Terzopoulos et
al. (1994) demonstrate physics-based computer simulations of ar-
tificial fishes showing a variety of behaviors such as locomotion,
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obstacle avoidance, and tracking. Faloutsos et al. (2001) show a
highly realistic physics-based simulation of complex human body
motions such as falling and standing up using a detailed anatomi-
cal model of the human skeleton. It would be a major challenge
to achieve this degree of anatomical accuracy in a physical robot
model.

Even if both implementations are feasible, computer simula-
tions could be more useful tools in modeling biological behavior
than robots, since they provide full control over the entire action-
perception cycle. Furthermore, simulations are not restricted to
real time or real size, so they can represent biological processes
that are too slow, too fast, too large or too small for a real-world
robot implementation. Neumann and Bülthoff (2001) use com-
puter simulations to demonstrate that three-dimensional flight
with all six degrees of freedom can be visually stabilized using
models of spatial orientation strategies found in insects. These
strategies exploit the distribution of local light intensities and lo-
cal image motion in an omnidirectional field of view, and include
mechanisms for attitude control, course stabilization, obstacle
avoidance, and altitude control. The motor system and flight dy-
namics of the artificial agent is a simplified model of the fruitfly
Drosophila and includes effects of drag due to air viscosity. With
computer simulations it is possible to represent such effects,
which would be extremely difficult to achieve in a robot imple-
mentation.
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Abstract: While robotics has benefited from inspiration gained from bi-
ology, the opposite is not the case: there are few if any cases in which ro-
botic models have lead to genuine insight into biology. We analyze the rea-
sons why biorobotics has been essentially a one-way street. We argue that
the development of better tools is essential for progress in this field.

We will here use the term robot to describe a hardware model of
a biological system whose interaction with the physical environ-
ment, both in terms of sensors and of actuators, forms an essen-
tial part of the model. The question asked in the title of Webb’s 
article is whether such robots can be useful for understanding bi-
ology. Our perspective as a group working at the interface between
biology and robotics is that robot models have the potential to
make considerable contributions, with significant advantages over

other styles of analysis, but that this potential is not being fully ex-
ploited at this time.

Robots vs. other models. We compare robot models with com-
putational models (i.e., numerical simulations) and theoretical
models (i.e., mathematical abstractions) on the one hand, and bi-
ological models, on the other. Computational and theoretical
models are devoid of any physical substrate. Although they are
comparatively easy to implement, compared to a robotic model of
the same biological system, oversimplification due to abstraction
gone too far is a significant risk for them. For instance, the mod-
eller must decide what (if any) external noise is to be included and
what form to give it; this decision may influence the outcome
strongly. A robot model will by its nature be subject to all the ac-
tual constraints and conditions of the real world, which cannot be
ignored or finessed away. Another disadvantage of computational
models is that some properties of the system or its environment
may actually be more difficult or costly to simulate in software
than in hardware (e.g., nonlinear friction, requirement for real-
time response, etc.).

Biological models – those using organisms, cultured cells, brain
slices, and so on as their substrate – have other limitations. First,
they are vastly more complicated than hardware models, involv-
ing complex biological tissue or even whole organisms. Gaining a
deep understanding of the system may therefore be difficult. Not
only is a robot model simpler than an animal model; since we con-
struct it ourselves, its components and their interactions are
known down to the lowest level.

In principle, using robot models rather than animal models may
also be preferable because of ethical concerns. At this time, we
feel that this is of limited importance because the current level of
robotics does not allow detailed modelling of behaviors that are
only found in animals of higher phyla, for which strong ethical con-
siderations come into play.

A one-way street – so far. Despite these benefits, however, the
flow of information between biology and robotics is at present al-
most entirely one-directional. While machine builders receive in-
spiration from biology, examples of significant discoveries in bio-
logical systems that were inspired by building robots are, at best,
rare. Webb lists some examples in her target article, but they are
few and far between. It is not clear whether there are yet any cases
in which robot models lead to nontrivial, successful predictions
that have been actually confirmed in animals. This is in marked
contrast to other modeling techniques, notable especially in com-
putational neuroscience, where computer modelling has become
a respected technique among biologists; the surest sign of this be-
ing that many experimental groups routinely develop computa-
tional simulations themselves.

Why has robotics not been similarly successful? One reason is
because the field is still relatively new and small. Biorobotics, in
the sense of robots being used to provide insight into biology, ar-
guably started about fifteen years ago with a paper by Brooks
(1985), several decades after computational models were first in-
troduced. Furthermore, the number of active researchers in the
field is still very small. This is not counting the large number of
those who may have completed one robotics project and then re-
verted to more classical methods. We have encountered a large
number of cases of model recidivism, in which a computational
model was implemented in hardware but, in the further course of
the project, the hardware implementation was abandoned in fa-
vor of future development of the computational model. Presum-
ably, it was found that pursuing the hardware implementation is
more difficult, expensive, and time-consuming than the imple-
mentation of a simulation. This brings us to the second issue, the
difficulty of the approach.

Constructing robots is a difficult, expensive process that takes a
long time from original design to finished prototype. Moreover,
materials are non-standard, and at present, essentially every
model has to be developed from scratch. Without doubt, the field
would make much faster progress if a robotic equivalent of the PC
existed – a low-cost, universally available, and standardized plat-

Commentary/Webb: Can robots make good models of biological behaviour?

1072 BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X01000127
Downloaded from https://www.cambridge.org/core. Ecole Polytechnique Fédérale de Lausanne, on 18 Feb 2022 at 10:34:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X01000127
https://www.cambridge.org/core


form allowing rapid prototyping and seamless collaboration of
large groups of researchers. A few candidate systems exist, both in
hardware (e.g., Lego MindstormsTM [http:www.legomindstorms
.com], the K-team robots [http:www.k-team.com], Tilden’s bugs
[Haslacher & Tilden 1995]), and in software (e.g., IQR [Verschure
& Voeglin 1998]) but at this time it is not clear whether any of
these, or any others, will be able to play the role for biorobotics
that the PC played for computational modelling.

The way out. While all of this may sound pessimistic, we remain
hopeful about the future. First, we believe that systems-level ap-
proaches will increase in importance. Second, although we are still
far away from the situation in computation where a nearly uni-
versal hardware infrastructure is cheaply and readily available,
prices of robotic equipment have come down by several orders of
magnitude in less than a decade, and the trend continues. Devel-
oping hardware models of biological systems may never become a
method for everyone, but it will play a larger role once tools be-
come available that will make robotic modeling accessible to a
larger part of the scientific world.
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The conundrum of correlation and causation

Irene M. Pepperberg
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Abstract: Biology can inspire robotic simulations of behavior and thus ad-
vance robotics, but the validity of drawing conclusions about real behav-
ior from robotic models is questionable. Robotic models, particularly of
learning, do not account, for example, for (a) exaptation: co-opting of pre-
viously evolved functions for new behavior, (b) learning through observa-
tion, (c) complex biological reality, or (d) limits on computational capacity.

Although Webb presents an important review of robotic models,
including excellent guidelines for their biological relevance, she
admits that “a model that behaves like its target is not necessar-
ily an explanation of the target’s behavior,” that is, that correla-
tion is not necessarily causation. Such oft-repeated statements,
however, do not dampen her enthusiasm for robotics as a means
to understand biological form and function. What her account
lacks is additional appreciation of potential problems inherent in
using robotics to answer biological questions. She fails to ac-
knowledge exaptation, observational learning, and complexity as
biological reality; she underestimates limits on computational
capacity.

Exaptation, or the co-opting of previously evolved functions to
do new things, can seriously compromise robotic simulation. Evo-
lutionary forces work on existent biology, and thus real-life biolog-
ical solutions may involve mechanisms less efficient than those
used robotically. Hewes (1973), for example, argues that spoken
language was derived from gestural forms without major neural re-
structuring. Data supporting Hewes’ hypothesis – and the notion
that exaptation of gestural neural substrates for communication
may be extremely widespread – are that parallel development of
physical and communicative combinatorial acts exists in humans,
nonhuman primates, and even Grey parrots (Greenfield, 1991;
Pepperberg & Shive 2001). Mechanisms used by a robotic system
to model acquisition of spoken language de novo might reproduce
data, but are unlikely to use circuits derived initially for stacking
cups in order to combine labels. Thus, its mechanisms would be
removed from, and say little about, those of biological systems.

Observational learning is also widespread in animals (Heyes &
Galef 1996). Animals would die before they could reproduce if

they had to learn skills such as predator avoidance or what to eat
via the trial-and-error mechanisms that are currently the basis for
computer modeling (Pepperberg 2001). Even in the most elegant
attempts at imitation simulation, which involve some form of pro-
gramming by example, the extent to which the computer learns is
limited (e.g., Lieberman 2001; Weng et al. 2001). Thus, the cur-
rent relevance of robotics to forms of learning beyond simple as-
sociationist principles, and to real-life systems, is limited.

In a related vein, biology is complex. Advanced learning in-
volves the ability to choose the set of rules, among many learned
possibilities, from which the appropriate response can be made,
and the creativity to build upon learned information to devise
novel solutions to a problem. In contrast, conditioned learning is
limited in scope in that it does not allow a robot even the ability to
alter behavior quickly based on the immediate past, much less al-
low immediate flexibility to respond to changing conditions. True,
brute force systems such as Big Blue win chess games with stun-
ning success (e.g., Campbell 1996), but such systems cannot learn
in a broad manner, that is, cannot integrate new and existing
knowledge to solve novel problems, take knowledge acquired in
one domain to solve problems in another, or form and manipulate
representations to attain concrete goals. The point is not that 
associative/conditioned learning is irrelevant: It exists, is a basis
for learning, can be seen as basic to the programming language of
learning . . . ; but it is not the appropriate overall program for
learning, because it does not engender generalization, transfer, or
insightful behavior. The simple initial association of stimulus and
response may be what is first linked in memory in humans, but for
humans repeated interactions in the real world both sharpen and
broaden the connections (Bloom 2000); what results is a repre-
sentation. Robots can indeed be programmed so that repeated in-
teractions improve their decision-making ability, and one might
even argue that statistically-based similarity coding might consti-
tute a representation. Advanced learning, however, derives from
manipulation of representations. What is needed to devise an in-
telligent learning machine, therefore, is not a more efficient pro-
gram that takes a stimulus as input and uses various rules to pro-
duce an expected response, but one that takes that stimulus and
uses creativity, reasoning, and decisions based on context to pro-
duce an appropriate, adapted, adaptive behavior. So far, robotics
cannot simulate such behavior.

Finally, the computational or robotic capacity used to produce a
model might be less than the computational capacity of the living
system; we cannot discount real-life mechanisms because simula-
tions cannot reproduce the data. Webb cites Kuwana et al. (1995),
who must use the actual antenna of moths on their robot model be-
cause available gas sensors are ten thousand times less sensitive
than the biological system. Later she comments on the rejection of
lobsters’ use of instantaneous differences in concentration gradi-
ents between their two antennules to do chemotaxis, simply be-
cause robotic implementation of this algorithm in the real lobsters’
flow-tank failed (Grasso et al. 2000) – that is, she implies that fail-
ure could be merely a consequence of the quality of the robotic
sensor. I applaud Webb’s inferences, but suggest that these prob-
lems are more serious than she surmises.

In sum, robotic design can advance from attempts to simulate
animal behavior without worrying about simulating exact mecha-
nisms. But using current robotic simulations (which for learning
are predominantly based on associationist principles) to answer
questions about real-life systems can lead into a trap identical to
that of Skinnerian behaviorism, which found many situations these
same laws could not explain. Anomalous activities of animals whose
natural responses to stimuli could not be reshaped by behavioris-
tic training (e.g., Breland & Breland 1961; see review by Roitblat
1987) required a new paradigm in which animals were seen as
multi-level processors of information (Kamil 1984; 1988; Pepper-
berg 1990). This need was made even clearer by behavioral ecolo-
gists, whose data could be explained only by positing mechanisms
such as selective attention and long-term memory (e.g., Kamil &
Sargent 1981; Pyke et al. 1977; see also Roitblat 1987), which were
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not part of the behaviorist tool-box. An existence proof via robotic
simulation that shows that an animal does not, for example, need a
cognitive map does not mean that such a map is not used. “Simple”
mechanisms are not necessarily how biology works, and trying to
create complex mechanisms by using brute processing force to link
enormous numbers of simple mechanisms can lead to serious mis-
understandings of real cognitive and neural processes.
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Living and learning

John Pickering
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Abstract: To be plausible, biorobots will need to build themselves. Such
autopoietic systems will be autonomous, active learners whose functional
architecture is a joint product of factors supplied by the designer and fac-
tors learned from encountering an environment. Creating such biorobots
will require appropriate theories of cognition, learning, and evolution, all
of which are available.

Models of biological behaviour have been with us for centuries, if
not millennia. From Daedalus to the comic mechanical animals of
the eighteenth century, we see a progression of attempts to model
biological behaviour in artefacts of one sort or another. What Bar-
bara Webb’s comprehensive review shows is that this project con-
tinues with the biorobotics research programme which is growing
vigorously. This comment addresses something that may be miss-
ing, or at least under-represented in the programme: the role of
learning.

Living cognitive systems actively explore the meaning of their
surroundings and learn to act more effectively from what they en-
counter. They create themselves through action, something which
Maturana and Varela call “autopoiesis” (Maturana & Varela 1987).
In Piagetian terms this is the outcome of a dynamic balance be-
tween assimilation and accommodation. Organic systems assimi-
late information about the world mediated by their internal struc-
ture. This structure then accommodates, adaptively, in turn
allowing a broader range of environmental inputs to be assimi-
lated. This growth of intelligence is driven by spontaneous living
behaviour. Behaviour is the driver of change, not just over the life-
time of a single organism but also over a longer evolutionary
timescale. As Piaget puts it: “Behaviour is the motor of evolution”
(Piaget 1979, Ch. 9).

Webb shows that biorobots are becoming capable of fairly au-
tonomous behaviour. If they could also learn, they might develop
and even evolve in biologically plausible ways. Something like this
has been in the air for some time, roughly since the advent of con-
nectionism, which offers new ways to describe the interaction of
innate and learned factors (e.g., Bates et al. 1998; Maynard-Smith
1987).

Now, some models of biological behaviour may be so closely
tied to an actual biological substrate that learning would not fig-
ure to any significant degree. Models of cell membrane dynamics
might be an example here. However, for neural networks and
whole-organism models such as the behaviour-based robotics of
recent years, learning through activity is more important. Not just
because learning is itself a biological behaviour but also because
it can help to create the robot. Then the plausibility of a biorobot
ceases to be simply a function of design and becomes a more com-
plex function of design, learning, and a history of growth and
change. This history is dependant on what the robot encounters
as it behaves in a given environment.

While many of the current generation of robots can learn, the
learning is sometimes of a rather passive Skinnerian sort. Skinner
concentrated on how animals learned the consequences of their

actions. He was less concerned with the internal changes that ac-
companied learning and with what it was that made animals active
in the first place. As such, his is a poor lead to follow when trying
to model the real biological role of learning.

Instead, it would be more helpful to regard learning as the cou-
pling the internal structure of an active cognitive system with the
environment in which it acts. This “structural coupling” according
to Maturana and Varela arises from the mutual evolution of au-
topoietic organisms and their environments (Maturana & Varela
1987). Indeed, Maturana and Varela have proposed a theory of
learning, action, and cognition that might serve well as the basis
for plausible biorobots.

This is not to reject current efforts but to suggest how to make
the functional architecture of biorobots more interesting and
plausible. If this architecture is simply specified in advance by the
designer, then a biorobot runs the risk of being a mere simu-
lacrum, a distant, if more sophisticated, descendant of the eigh-
teenth century automata. By contrast, if a robot’s functional ar-
chitecture is the result of autonomous learning, then its behaviour
becomes the more interesting and the less liable to the usual cri-
tique of robots that “you only get out what you put in.”

Moreover, it aligns biorobotics with an important shift in cog-
nitive science. There is a move away from simple computational
metaphors and towards the language of dynamic systems theory
in which cognition is treated as embodied action distributed
within specific situations (e.g., Clark 1997; 1998; 2001). Learning,
action, and change are central to this shift. As Maturana and Varela
put it: “All knowing is doing and all doing is knowing” (Maturana
& Varela 1987, p. 27). Cognition is biological action and not mere
computation. It depends on having a body of a certain sort that
has, through active learning, become adapted to particular situa-
tions.

Thus, any biorobotic model has to take into account its own
physical properties as well as the situation in which its cognitive
skills are expressed. Moreover, what actually comprises the system
is not merely that which is internal to the robot but also the struc-
ture of the environment to which it is coupled. If this coupling
emerges as an active biorobot learns from its encounter with its
environment, then it will be a more plausible model of biological
behaviour.

Modelling criteria: Not just for robots

George N. Reeke
Laboratory of Biological Modelling, The Rockefeller University, New York, NY
10021. reeke@lobimo.rockefeller.edu www.rockefeller.edu

Abstract: Webb’s scheme for classifying behavioral models is applicable
to a wide range of theories and simulations, nonrobotic as well as robotic.
It is suggested that a meta-analysis of existing models, characterized ac-
cording to the proposed scheme, could identify regions of the seven-di-
mensional modelling space that are particularly likely to lead to new in-
sights in understanding behavior.

Barbara Webb has given us a very rich and yet very practical set of
dimensions that can be used to characterize and categorize mod-
els of cognitive and neural systems, along with a quite compre-
hensive survey of the biorobotics literature to show how various
approaches fit into her scheme. While she has confined her dis-
cussion to robotic models, professedly to keep the work to a man-
ageable size, it is important to note that the proposed classifica-
tion (with the possible exception of dimension 7, medium of
implementation) is in fact applicable to essentially the entire range
of models proposed in the brain and behavioral sciences. This is
clear when one considers that biorobots are, after all, instantia-
tions of more or less abstract theories.

Further, Webb has quite rightly refrained in the target article
from attaching value judgements to different locations in her
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modelling space; nonetheless, it is tempting to think that some lo-
cations in this space may be more favorably situated than others
to provide fruitful theories of behavior. For this reason, it can be
hoped that other authors will take up the challenge and undertake
a meta-analysis of existing models with the aim of identifying po-
sitions along Webb’s dimensions where the most productive mod-
els can be found.

In this spirit, I would like to amplify a bit on several of the points
that Webb has made in order perhaps to identify a few regions
where robotic models may have particular advantages:

Simulating the whole hypothesis and nothing but the hypoth-
esis. As G. M. Edelman and I have pointed out some time ago
(Reeke & Edelman 1988), models that address only a circum-
scribed part of a cognitive system must be very carefully con-
structed and interpreted in order to avoid the danger of inadver-
tently introducing homunculi at the interface between the model
and the world – unspecified components (usually the mind of the
modeller) that are not part of the model but that carry out func-
tions critical to its successful performance. Biorobots, or at least
the autonomous variety of biorobots, because they interface di-
rectly with the world, avoid this hazard. Of course, it is also possi-
ble, with suitable care, to avoid homunculi in nonrobotic model
systems (Reeke et al. 1990).

Dealing with the real world. Dealing with the real world has an-
other big advantage: It forces the modeller to address problems
that a real organism has to face, but which are easily avoided by
felicitous choice of input and output representations in more ab-
stract simulations. This is similar to the homunculus problem
mentioned above, except now the homuncular mechanisms are
explicit rather than inadvertent. Examples of such problems
would include: recognizing visual patterns in the face of scale and
rotational perturbations caused by the relative motion of the sub-
ject and the object; manipulating objects that respond in unex-
pected ways to touch, for example, by falling over or running away;
compensating for unreliable effector mechanisms. It is easy to dis-
miss these problems as secondary when developing an abstract
model; building a robot forces one to see that they are funda-
mental.

Practicality: Operation in real time. Robots need to respond
quickly enough to changes in the environment that their “plans”
for solving a problem are not rendered irrelevant by new circum-
stances. While some allowance can be made for the relative speeds
of available microprocessors versus brains, ultimately, cognitive
models, whether instantiated as robots or not, must meet this test.

Isomorphism: The balance between realism and simplicity.
Webb makes it quite clear that realism and simplicity are not mu-
tually exclusive. She reminds us of the warning by Churchland et
al. (1990) that an overly faithful model is as likely to be incom-
prehensible as the system itself. The other side of this coin is that
an overly simplified model is likely to miss key aspects of the prob-
lem that the biological system has to solve. A widely cited exam-
ple of this is the “Wickelfeature” representation of words used by
Rumelhart and McClelland (1986) in their early model of English
past tense learning. Prince and Pinker (1988) have discussed in
detail why this representation was too simple. Webb’s discussion
of abstraction provides some helpful guidelines for arriving at an
appropriate balance. Perhaps the trick is to abstract the solution
without abstracting too much of the problem. Instantiation of a
model as a robot can be a valuable aid in evaluating the costs ver-
sus paybacks of adding complications to that model.

Dimensions of modelling: Generality 
and integrativeness

Jeffrey C. Schank
Department of Psychology, University of California at Davis, Davis, CA
95616. jcschank@ucdavis.edu
http ://psychology.ucdavis.edu/Schank/

Abstract: Webb has articulated a clear, multi-dimensional framework for
discussing simulation models and modelling strategies. This framework
will likely co-evolve with modelling. As such, it will be important to con-
tinue to clarify these dimensions and perhaps add to them. I discuss the
dimension of generality and suggest that a dimension of integrativeness
may also be needed.

Webb’s multi-dimensional framework provides a good starting
point for discussing modelling strategies. As a framework, it
should not be construed as a formal philosophical analysis of mod-
els or modelling. Instead, it is likely to co-evolve with the devel-
opment of modelling strategies. I will focus on two issues. One
concerns the dimension of generality. The other concerns the
long-term need for integrative modelling strategies.

Generality is a key dimension of modelling articulated by Webb,
and by Levins (1966), with the aim of discussing model generality
in the practice of modelling. While there are many philosophical
views of generality, most are not applicable to the practice of mod-
elling. However, in Webb’s view, by studying specific systems we
may discover core ideas that are used over and over again in mod-
els applied to a broad range of systems. This suggests that gener-
ality emerges from applications of modelling, and that general mod-
els share core ideas in common.

To further clarify this important idea, it is useful to contrast it
with the opposite idea that general models are more detailed mod-
els (Orzack & Sober 1993). To evaluate these contrasting views
and their relevance to modelling practice, it is best to examine
them in actual practice. The biological control of insect pests pro-
vides a simple yet representative area of biological modelling for
comparing alternative views of generality.

Modelling biological control has had an extensive history of ap-
plication to host-parasitoid systems in part because modelers
could construct relatively simple yet biologically plausible models
(Mills & Getz 1996). For example, the specificity of many para-
sitoids makes it biologically plausible to treat host-parasitoid sys-
tems as closed; the generation times of hosts and parasitoids are
often nearly the same; and because adult parasitoid females attack
hosts, age structure can be simplified or safely ignored.

For discrete generations, Nicholson and Bailey (1935) devel-
oped a basic model with two core ideas. First, the number Ne of
encounters of hosts with Pt parasitoids is proportional to the num-
ber of hosts Nt. This core idea is expressed as Ne 5 a NtPt (Has-
sell 1978). Second, the Ne encounters are randomly distributed
among the available hosts. Thus, the probability that a host is
not attacked is the zero term of the Poisson distribution: p0 5
exp(2Ne/Nt), where Ne/Nt is the mean number of encounters per
host. The actual number of hosts parasitized is Na 5 Nt[1 2
exp(2Ne/Nt)]. Now, assuming that (i) Ne/Nt 5 aPt , (ii) each host
parasitized produces one adult parasitoid (e.g., phorid flies lay a
single egg in each fire ant attacked), and (iii) the rate of increase
of hosts is l, then the basic discrete-generation model is illustrated
in Figure 1a.

Many variations of this basic model have been proposed over
the years to address problems such as functional responses and
non-random searches of parasitoids, but the fundamental prob-
lem facing these models from the beginning was population sta-
bility (Hassell 1978; Mills & Getz 1996). Indeed, three models
were proposed that directly addressed this problem (Fig. 1b, c, d;
Mills & Getz 1996). All three produce qualitatively similar behav-
ior but not necessarily for the same range of parameter values, and
biologically unrealistic behavior can occur for some parameter val-
ues of m and n in b and c respectively (Hassell 1978).
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In Orzack and Sober’s (1993) view of generality, model e is both
the most general and realistic form of these stability models. This
is because models b, c, and d are mathematically derivable from
e, given specific assumptions (a is also derivable from b, c, and d,
given specific assumptions). For example, b is derivable from e on
the assumptions that n 5 0, K approaches infinity, and er 5 l.
However, most biological modelers would consider e neither gen-
eral nor realistic but rather biologically absurd (Levins 1993).

The process of modelling does not start from the most complex
set of equations that can be conceived and then subsequently
pared down to specifically applicable models. Instead, modelers
search for core ideas that can be used to model a variety of sys-
tems as Webb suggests. Thinking about generality in the context
of modelling leads to a radically different view of the products of
modelling: A view in which the products of modelling are more
like phylogenies of models rather than extraordinarily elaborate
and detailed models.

Another issue that is likely to become increasingly important in
future research concerns how to integrate different types of mod-
els and modelling strategies to achieve the aims of increasingly so-
phisticated research programs. Organisms are paradigms of com-
plex systems in which causal influences on behavior circulate up
and down levels of organization (Schank 2001). A long-term chal-
lenge will be to develop strategies for integrating the different
types of models required to model these complex bio-behavioral
systems. These strategies must allow us to efficiently and rationally
build models that facilitate deeper theoretical and empirical un-
derstanding of organisms and their behavior. This may be espe-
cially challenging because, broadly construed, simulation models
include not only mathematical and robotic models but also exper-
imental designs (Levins 1993).

Such integrative modelling strategies will require more than the
coordinated use of different types of models. We will need to ar-
ticulate strategies for developing multi-level models that integrate
different types of models at multiple levels of organization
(Schank 2001). We will need strategies for how one type of mod-
elling (e.g., robotic) may inform and guide the development of
other types of modelling (e.g., designing experiments). We will
also need to articulate how information about model failures can
be used to build better models (Wimsatt 1987), and to find ways
to use model failures of a given type (e.g., robotic model failures)
to build better models of other types (e.g., experimental designs
or computer simulations). These considerations strongly suggest
that future discussions of modelling will require an additional in-
tegrative dimension for discussing how different types of models
can facilitate integrative strategies.
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Is there more to “model” than “muddle”?

Matthias Scheutz
Department of Computer Science and Engineering, University of Notre
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Abstract: Any discussion comparing different models with respect to their
quality qua models must presuppose a notion of model, that is, what it is
to be a model. While Webb provides seven criteria to assess the quality of
various proposed biorobotic models, she does not clarify the very notion
of “model of animal behavior” itself.

The term “model,” like any widely used term of significant theo-
retical importance, connotes a variety of concepts. Barbara Webb
demonstrates this convincingly, quoting from many research arti-
cles in the various subfields of the behavioral sciences. This
“model muddle” is unfortunate, especially because researchers in-
volved in “modelling” animal behavior have clear intuitions about
the aims and significance of their endeavors, even if it is not obvi-
ous how to formulate the underlying concept of model precisely.
If the notion of “model,” despite its numerous, partly incompati-
ble and even opposing construals, is of enough theoretical and
practical interest to be part of our explanatory framework, then
significant effort should be devoted to making this notion precise,
for it underwrites the very practice of “modelling.”

Unfortunately, “modelling” qua practice is often covertly con-
flated with the “modelling relationship” between two systems.
Webb’s article is no exception (e.g., see sect. 2.2). If the purpose of
“modelling” is “often to discover what are the ‘relevant feature’ or
‘essential structures’,” then there have to be such things as features
or structures of target systems in the first place, to make sense out
of what modellers do when they try to “model” them. In other
words, the practice of modelling is conceptually dependent upon
a notion of model. Webb, however, claims that “model usage can-
not depend on prior knowledge of what [the relevant features and
essential structures are] to establish the modelling relationship,”
conflating the epistemological process of establishing “the model-
ling relationship” between two systems with the independent on-
tological question of whether, in fact, any such relationship exists
between them. Even if we focus on the epistemological question,
it seems unlikely that modellers approach their task without any
theoretical prejudice as to why a particular system (simulation, ro-
botic, etc.) may count as a model of the target system. That certain
features of the model may turn out to be of higher relevance to the
investigated target than others in the course of the modelling
processes, does not take away from the fact that there has to be a
modelling relationship in the first place that enables one to assess
the relevance of various features of the model.

While Webb takes “modelling” to involve “the relationship of
representation or correspondence between a (real) target system
and something else,” she seems to dismiss the possibility of a gen-
eral notion of model, based on a notion of correspondence. In sec-
tion 2.1, for example, she infers from the fact that “in the vast ma-
jority of cases, models are not (mathematical) isomorphisms, nor
are they intended to be,” that any attempt to define the notion of
model in terms of structural relationships (such as homomor-
phisms and isomorphisms) is doomed to fail. In particular, she
confers the label “oxymoron” upon the notion of partial isomor-
phism and claims that it “cannot suffice to be used in valid de-
duction.” Not only is this conclusion contrary to standard practice
in (logical) “model theory,” where partial isomorphisms are rou-
tinely employed to study the relationship of structures that are not
themselves isomorphic, yet share isomorphic substructures (e.g.,
Ebbinghaus et al. 1980), but it is also not true. To see why, one
needs to distinguish between descriptions of systems and the sys-
tems themselves: whereas the modelling relationship is a struc-
tural relationship between two systems, the notion of deduction
pertains to formal proof systems, which in turn presuppose a (for-
mal) language (in order to deduce properties of the target system
from properties of the model system, a proof system is required in
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Figure 1 (Schank). Two views of generality: relationships be-
tween the basic Nicholson-Bailey model (a), three stability mod-
els (middle), and a model, e, from the middle models are deriv-
able.
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a language, in which both the target system and the model can be
described).

The logical notion of partial isomorphism is defined for two
(formal) structures in a common language as a bijective mapping
from a subset of the domain from one structure to a subset of the
domain of the other, which respects all functions and relations of
the language. This can be extended to real-world systems by tak-
ing the domain of a structure to consist of the parts of a system (at
some level of description). Consequently, the mapping needs to
be established between parts of the target and parts of the model
such that the structural properties (as determined by the common
language) of either system are preserved.

Once the notion of partial isomorphism is introduced for two
systems, it can very well be used for deductions as long as they are
restricted to isomorphic subsystems under partial isomorphisms.
In fact, it is exactly this notion of partial isomorphism that seems
to lie at the heart of a general notion of model, as it captures our
intuitions about what it means for parts of the model system to
correspond to parts of the target system (in a systematic way). And
it is the existence of such a mapping between substructures that
warrants calling one system a model of the another.

Webb focuses on “robots used as simulations of animals”, that
is, on robotic systems that “address a biological hypothesis or
demonstrate understanding of a biological system,” but what this
phrase means remains unclear. It seems that she, after having
overtly acknowledged the difficulties buried in the notion of
model, covertly uses phrases like the one above or like “the robot
model of X,” where X is a function or capacity of an animal, as if
they were entirely unproblematic. Yet, it is left open when, and to
what extent, a robotic model can be said to exhibit or have X; that
is, the crucial question of what exactly warrants the claim that a
robot system is a model of an animal with respect to X is not an-
swered. While the suggested seven dimensions, along which 
models in biology can vary, seem helpful in assessing the quality
of various proposed biorobotic models, they tacitly presume an
agreement on what it is to be a model (of an animal or animal be-
havior). Webb’s article does not make this explicit, despite its in-
trinsic merit as a detailed overview and comprehensive summary
(including a long, very useful bibliography) of current modelling
endeavors in biorobotics.

Biomimetic robots and biology

Allen I. Selverston
INLS-0402, University of California, San Diego, La Jolla, CA 92093.
aselverston@ucsd.edu

Abstract: Using robots that operate in the real world as opposed to com-
puter simulations of animal behavior is a form of modeling that may pro-
vide some biological insights. However, since engineering principles and
materials differ significantly from those used in biology, one should be ex-
tremely cautious in interpreting robot biomimicry as providing an expla-
nation of biological mechanisms.

Like the term neural networks, the term “biomimetic robots” has
a certain seductive quality that promises more than it can deliver.
Just as artificial neural networks do not have anything to do with
real neural networks, biomimetic robots cannot duplicate living
processes with nonliving materials. For example, there is nothing
even remotely similar to muscle tissue available to roboticists. Cur-
rently, linear actuators and the computer programs which act as
controllers for them are not analogous to muscles and nervous sys-
tems. This is true not only at the material level, but in terms of our
understanding of the biological principles for controlling move-
ments. Perhaps the greatest deficiency for biomimetic robots, how-
ever, is their inability to mimic the biochemical mechanisms that
are at the heart of physiological processes. This applies not only to
phenomena like energy balance (batteries are a poor substitute for

ATP), but to hormonal control of global processes like motivation
and drive, as well as the biochemical pathways underlying cellular
mechanisms like synaptic transmission. Because biology has been
spectacularly successful at the cell and molecular level, neurobiol-
ogists today are awash with reductionistic data. Yet, it is a truism
that all of this data will not in and of itself be adequate to tell us
how nervous systems work. Modeling, therefore, is essential as one
way to organize this data into larger structures and eventually into
whole organisms. This will enable testing hypotheses and making
predictions that can be experimentally verified. Typically, such
modeling has been accomplished with computer simulations.
Webb suggests that robots usually built by engineers which can be
“inspired” by biology, can in fact serve as models for understand-
ing biological mechanisms. In fact, she postulates, they may even
be better than computer simulations because they might uncover
problems that exist only in real world situations.

There is no universal response to the question of whether or not
a physical model might be more advantageous than a computer
simulation in answering biological questions. The nervous system
has to process physical stimuli by transduction and neural coding
using organic structures that are individually and collectively 
different from man-made physical devices. Nevertheless, some
neural systems can work in a way that can be mimicked with en-
gineering principles; and for these processes, we might indeed
learn something of biological relevance. The three examples
Webb cites illustrate this, and there are many others. However, I
think one should be extremely cautious in assuming we can un-
derstand all neural mechanisms with physical models. The neuro-
physiological basis for most behaviors is very incomplete in terms
of neural circuits and neuronal properties, so validating behavioral
mechanisms with robots that are controlled by computer pro-
grams is not going to suggest anything about the circuit mecha-
nisms that underlie animal behavior.

But as Webb has shown in her own work, some of the underly-
ing principles of cricket acoustic behavior can be mimicked with-
out building an entire robotic cricket and, instead, letting the
hardware of interest control a mobile platform. Her results can aid
in understanding the neural mechanisms used by real crickets
even though the circuitry involved in cricket phonotaxis is not
completely understood. Where circuits are known in detail, they
may be helpful in building robots that perform tasks different
from the task the circuit normally controls. We know enough gen-
eral principles about the circuits operating invertebrate CPGs to
use them as the basis for designing controllers for specific sen-
sorimotor tasks other than the ones the circuit may have been
specifically designed for. One will probably learn more with
known circuits that can be modeled and modified, than by mod-
eling ungrounded arbitrary circuits, especially large scale models
in which almost everything is guessed at.

Finally, it seems to me the greatest gap lies in the area of what
Webb calls the “performance match” dimension. A simple under-
determined robot that can perform one or two sensorimotor tasks
similar to some organism, does not demonstrate biological mimicry.

Most modelers do not test their models sufficiently, and, to the
extent that roboticists work with biologists and vice versa, the
match between robotic and biological behavior will improve. But
at the moment engineers can still get more from biology than the
other way around.

The methodology of the artificial

Luc Steels
Sony Computer Science Laboratory – Paris, and VUB AI Laboratory,
Brussels, 1050, Belgium. steels@arti.vub.ac.be http ://arti.vub.ac.be

Abstract: Biorobotics research should not only target “realistic” models
of living systems and be judged exclusively from that perspective. It should
pay just as much attention to formal models and artificial systems. They al-
low the examination of assumptions which do not necessarily hold for liv-
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ing systems, but precisely therein lies their value. They generate insight by
enabling a comparison between the artificial and the real.

Barbara Webb is to be applauded for her courageous effort to ex-
amine the methodological assumptions of those researchers in ro-
botics and artificial intelligence who do not exclusively focus on
building practical applications, but try to advance scientific knowl-
edge on adaptive behaviour and cognition. Webb focuses on the
question of how far robots can be good models of biological be-
haviour, where “modelling involves the representation or corre-
spondence between a (real) target system and something else”
(target article, sect. 2.1). This type of realistic modeling is very
common and several robotics researchers reviewed in her paper
have stated that their robotic experiments should be interpreted
as such. But it is not the only way.

There is a second type of scientific activity which consists in
making formal models, as illustrated by work in theoretical biol-
ogy or theoretical economics. Formal models do not necessarily
describe a natural system. But they examine the implications of
certain assumptions that can then be used to understand natural
systems. The assumptions need not be realistic; on the contrary,
unreality of assumptions is often seen as a virtue: “to be important
. . . a hypothesis must be descriptively false in its assumptions,”
says economist Milton Friedman (1953, p. 14). Unrealistic as-
sumptions make it possible to investigate boundary conditions,
isolate factors, highlight implications which would otherwise go
unnoticed, perform demonstrations by reductio ad absurdum, and
so on. Thus, Nowak et.al. (2000) make a number of obviously false
assumptions in their formal models of the evolution of language,
for example, that the lexicon and grammar of a language are trans-
mitted genetically. But this does not diminish the strength of their
claims about why compositionality may be selectively advanta-
geous. A lot of mathematically oriented research in neural net-
works, and many papers found in conferences on “simulation of
adaptive behavior” or “artificial life,” similarly explore formal
models rather than realistic ones.

Building artificial systems is a third, and in my view, truly alter-
native type of scientific activity – one that many biorobotics re-
searchers implicitly practice. It consists in building a machine that
has a functionality similar to the one performed by a natural sys-
tem, for example, an airplane capable of artificial flight or an arti-
ficial walker capable of walking. An artificial system is, on the one
hand, more “realistic” than a formal model because it involves
building physical systems that undergo the constraints of nature
or of the cultural and social environment in which they are put.
But the researcher is not restricted to mimicking natural systems.
Building artificial systems is therefore similar to formal modeling:
it can explore alternative solution paths, use other boundary con-
ditions, adopt pragmatic solutions that are very different from bi-
ological implementations. An airplane is not a realistic model of a
flying bird. Its wings do not have feathers, it does not flap its wings,
it does not run on two legs. Early attempts to build airplanes by
modeling biological systems failed miserably. Similarly, an artifi-
cial walker, or an artificial face recognition system, does not have
to mimic the solutions adopted by human beings, which are hardly
understood anyway. What matters is good performance and this
can be measured accurately and objectively. Artificial systems re-
quire a level of detail which is not necessary in formal modeling.
Thus, Nowak et al. (2000) can simply assume that agents learn a
grammar with a certain probability without having to specify the
learning algorithm itself – whereas an artificial system research-
ing the same questions would need an operational learning
scheme that can work on realistic linguistic input and use self-gen-
erated meaning anchored in the world through a sensory-motor
apparatus (Steels 1998). Artificial systems are more constrained,
however, because the solution must work in reality. This gives less
freedom in exploration.

Why would we want to use the methodology of the artificial? I
see at least three reasons: We may want to replicate the function-
ality in a cheaper, more reliable, or more robust way. For exam-

ple, we may want to build airplanes to carry people and cargo re-
liably through the air. We may want to understand how a particu-
lar functionality can be achieved at all, and thus comprehend a
mystery that nature somehow solved. Or, we may want to compare
the behaviour and mechanisms of artificial systems to that of nat-
ural systems achieving the same functionality. Comparing is not
the same as mimicking or modelling the natural system in the
sense discussed by Webb (target article). On the contrary, it is a
way to gain insight by confronting it with something that is differ-
ent but still sufficiently similar to make the comparison interest-
ing.

By pretending that the main goal of present-day biorobotics re-
search is to make faithful models of biological systems, we miss out
on the opportunities for insight that formal models and artificial
systems give us, and we only increase the existing misunderstand-
ing about the methodology of the artificial. Hence, we make it
even more difficult for researchers following other approaches to
see the point or to learn from our results. There is no doubt that
this misunderstanding exists. My current research focuses on lan-
guage communication, particularly on questions concerning the
origins and acquisition of language and meaning (Steels 1998). I
try to get to a point where robots construct a shared communica-
tion system about the real world perceived through their sensors.
I am often asked whether it is really necessary to build these phys-
ical robots, given the effort involved, and whether the same in-
sights cannot be gained by computer simulations. Our papers are
occasionally rejected by conferences in linguistics or natural lan-
guage processing on grounds that the artificial languages con-
structed by these robotic agents are not natural, – as if a sentence
constructed for the occasion by a generative linguist or computa-
tional language processing without semantics and pragmatics are
more natural! In any case, such reactions miss the main points of
the methodology, namely: (1) artificial systems are developed in
the first place to examine the consequences of certain assump-
tions, just as formal models are; (2) they require much more real-
ism than formal models and hence provide much deeper insight;
but (3) the goal is not to build realistic replicas of natural systems.
Their value for understanding nature lies in providing points of
comparison with natural systems. Such an activity is as valuable as
making faithful realistic models.
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Robotic modeling of mobile ball-catching 
as a tool for understanding biological
interceptive behavior

Thomas Sugara and Michael McBeathb
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Abstract: We support Webb’s insights into the potential benefits of using
robotic modeling to better understand biological behavior. We defend the
major points put forward by Webb by presenting a specific case study in
which robotic modeling of mobile ball catching has helped refine and clar-
ify aspects of our understanding of biological interceptive behavior.

In this commentary, we support Webb’s insights into the potential
benefits and pitfalls of using robotic modeling to better under-
stand biological behavior. We defend the major points put forward
by Webb by presenting a specific case study in which robotic mod-
eling of mobile ball catching has helped refine and clarify aspects
of our understanding of biological interceptive behavior. We show
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how a robotic model designed to only use information that is per-
ceptually available allows us to examine whether proposed per-
ceptual heuristics can accurately account for biological intercep-
tive behavior. A tunable robot also allows us to systematically
control parameters such as thresholds, reaction lag time, and res-
olution to see if these accurately account for the patterns of vari-
ance observed in biological interception.

Recent perceptual models of how humans catch fly balls have
been based largely on ecological principles that presume an ideal
observer (and in much of the earlier work, on an ideal environ-
ment with no air-resistance or mechanical lag). Examples include
the Optical Acceleration Cancellation (OAC) model introduced
by Chapman (1968) and later refined by others (e.g., McLeod &
Dienes 1996; Michaels & Oudejans 1992) and the Linear Optical
Trajectory Model introduced by us (McBeath et al. 1995; 1996;
Shaffer & McBeath 2002). Both of these approaches utilize con-
trol principles to guide the fielder to the correct destination by lo-
comoting along a path that maintains constant movement of the
image of the ball (Marken 1997). In the case of OAC, the vertical
optical speed is maintained to be constant, while in the case of
LOT, the optical trajectory is maintained to monotonically increase
along a straight line (see Figs. 1 and 2). These models also treat the
fielder as a point receptor, and assumed that ongoing calculations
of optical angles from the perspective of the running fielder are re-
calibrated independent from the direction he is facing.

When we began trying to simulate biological interceptive be-
havior with a robotic model, we realized that important behavioral
aspects were not clearly elucidated and defined in the previous
perceptual models. In particular, we noted that there are two ways
that the optical constancy of the trajectory of the ball can be en-
coded. One approach, which we refer to as “passive,” is to keep
the eye (or camera) stationary relative to the environmental ref-
erence frame, and control the position of the fielder to maintain
constant optical ball movement across the stationary retina. A sec-
ond approach, which we refer to as “active,” is to move the eye rel-
ative to the environment. Here, the fielder or robot tracks the ball
by moving the optics to keep them directed toward it, and then
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Figure 1 (Sugar & McBeath). The OAC Model. Shown is a side view of tempo-
rally successive images of a fielder (large dot) running up to catch an approaching
fly ball (small dot). The fielder runs along a path that maintains a constant rate of in-

crease in the vertical tangent angle of the ball, 
.

a is defined as the verti-

cal optical angle of the ball from the perspective moving fielder. The optical change
is equivalent to that produced by an imaginary elevator that rises at a constant speed
along the tilted back-plane shown to the left.

d
dt

tan( )a

Figure 2 (Sugar & McBeath). The LOT Model. Shown is a
bird’s eye view of a fielder (hat) running along a path to intercept
the ball (white dot) in successive temporal intervals (t0-t4). The
fielder runs along a path that keeps the image of the ball moving
along a monotonically rising Linear Optical Trajectory (LOT).
Mathematically, a constant optical projection angle, Y, is main-
tained. The optical change is equivalent to that produced by an
imaginary elevator that rises at a constant rate along the tilted
line.
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the position of the fielder is controlled to maintain constant move-
ment of the eye (or camera) relative to the environment (McBeath
et al. 2001; Sugar & McBeath 2001; Suluh et al. 2001).

From the perspective of the previous perceptual models and
the assumption of an ideal observer, these two approaches are
equivalent. But using the robotic simulation, we were able to
demonstrate that the active approach is more robust against noise,
and allows for a higher gain, so it is superior in a real world set-
ting, with real mechanical and inertial constraints. This prompted
us to confirm that biological fielders also appear to follow the ac-
tive approach, and gave us insight as to why. Next we plan to sys-
tematically alter perceptual thresholds, lag, and gain parameters
of the robotic model and verify that the variance in robotic field-
ing behavior matches that found in biological domains. The ro-
botic platform has thus helped us to articulate and refine our bio-
logical model of interceptive behavior.

Our robotic simulation is an example that meets Webb’s con-
ditions for a useful scientific endeavor. It is relevant because it
applies to real interceptive behavior in humans and animals (Col-
lett & Land 1975; Jablonski 1998; Masters et al. 1985). It has the
appropriate level, in that it models at the control parameter level
just as do the perceptual interceptive models. It is generalizable
in that it applies to all biological navigation that utilizes system-
atic control of optical variables. It has an appropriate level of ab-
straction, in that the complexity of the robotic and human per-
ceptual models match well and account well for the variability of
the running behavior during the interception task of catching a
fly ball. It is structurally accurate, in that the design of the robotic
model is a straightforward mapping from proposed biological
control heuristics. It results in a good performance match with
the types of running paths found with biological interception.
And finally, the medium is the same as with biological intercep-
tion, both are real-world, ball-catching tasks that utilize only in-
formation that is realistically available from the perspective of a
moving organism.

In short, we designed and tested a robotic model of intercep-
tive behavior and found that it meets Webb’s validity test de-
mands, and that it has added insight to our understanding of bio-
logical interceptive behavior by demanding a more refined and
complete biological model to control an autonomous robot.

Soul searching and heart throbbing 
for biological modeling

Daniel L. Younga and Chi-Sang Poonb

aDivision of Health Sciences and Technology, Mechanical Engineering, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139; bDivision of
Health Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, MA 02139. dlyoung@mit.edu cpoon@mit.edu
http ://cybernet.mit.edu/

Abstract: Biological models are useful not only because they can simulate
biological behaviors, but because they may shed light on the inner work-
ings of complex biological structures and functions as deduced by top-
down and/or bottom-up reasoning. Beyond the stylistic appeal of specific
implementation methods, a model should be appraised according to its
ability to bring out the underlying organizing and operating principles –
which are truly the model’s heart and soul.

In the target article, Webb proposes a set of useful criteria (or “di-
mensions”) for assessing biological models. These criteria present
a definitive lexis for “bottom-up” models that aim to simulate over-
all behavior based on the observed mechanisms at elemental lev-
els. Another approach to modeling, which is alluded to in passing
by Webb, is a “top-down” strategy that aims to infer the elemen-
tal processes from observed overall behavior. Although less well
appreciated, top-down modeling is routinely practiced in hypoth-

esis-driven investigations in the life sciences as well as the physi-
cal (Lightman 1992) and social sciences (Bradley & Schaefer
1998; Poon 1994).

Specifically, top-down models (Fig. 1) translate integrated 
phenomena into hypotheses about sub-level components and
their interrelationships, often through the formulation of some
overarching law or “theory.” Because of their reliance on deduc-
tive reasoning, top-down models are necessarily controversial and
could be met with skepticism, misunderstanding or outright in-
difference by others, particularly when the system is complex, the
theory is abstract, and hard evidence is lacking. Nonetheless, such
controversies may create an impetus for scientific inquiry into po-
tentially revolutionary ideas which, if proven correct, could have
far-reaching scientific implications in comparison to research ap-
proaches that target a specific reduced structure.

A masterpiece of top-down modeling comes from the legendary
Mendelian theory of heredity, which laid the foundation of the ge-
netics discipline. Like any avant-garde, however, the significance
of this historic breakthrough was disregarded altogether by Men-
del’s peers, only to be resurrected with utmost reverence decades
later when the cellular and molecular basis of the genetic code be-
gan to unfold.

By contrast, bottom-up models (Fig. 1) are grounded in exper-
imental evidence of elemental structures and mechanisms, and
their usefulness is determined by how well they match overall be-
haviors. This process of model building is well served by the con-
ventional reductionist approach, which is an efficient strategy of
systematically amassing discrete data. The feasibility of such a
strategy is ultimately dictated by the advent of modern technol-
ogy, namely, more powerful experimental tools afford further
miniaturization, modularization, and proliferation of observations
thereby laying the groundwork for model building at more ele-
mental levels.

The bottom-up approach mistakenly presumes that the discov-
ery of prime data, rather than modeling per se, is key to the un-
derstanding of biological mechanisms and behaviors. This over-
simplification is not always true, however. Take, for example, the
landmark discovery of the structure of DNA. Here, the reduc-
tionist’s approach produced an impressive set of elemental data,
and yet it was the ingenious modeling effort of Watson and Crick
that ultimately fit all the pieces of the puzzle together, making
sense of them. In most instances, both top-down and bottom-up
approaches may be needed in order to solve a complex problem,
and a model is fully validated only when bottom-up meets top-
down (Lisberger & Nusbaum 2000; Poon 1992).

At another extreme, the recent mapping of the human genome
has proved to mark just the beginning – rather than the end – of
an odyssey to explain biological behavior from bottom up. This
challenging task is hampered by its intrinsic combinatorial com-
plexity which, in the absence of any unifying theories or models as
guiding principles, may prove to be intractable in practice (XIII
Oxford Conference, 2001). Could there be the equivalent of such
grand deductive theories as law of gravity, relativity and evolution
in the bioinformatics of genes and neurons?

That said, then how good are biological models – in particular
bio-robotic models? In our view, a model should embody the key
(observed or hypothesized) organizing and operating principles
that relate top-level to bottom-level mechanisms – and vice versa
– based on (observed or predicted) processes and behaviors at ei-
ther or both ends as well as the intermediate levels. As such, the
specific modalities and media for model implementation, such as
bio-robotic or computer models, are secondary for the purpose of
explaining biological behavior. The crux of a model is whether it
captures (definitively or hypothetically) the fundamental working
principles behind intricate biological structures and functions,
which are truly the model’s heart and soul. A model that only sim-
ulates the behavior without illuminating the underlying principles
is nothing but a lifeless body.

This emphasis on principles over forms is consistent with that
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envisioned by the noted mathematician N. Wiener in his coining
of the term cybernetics to describe the “entire field of control and
communication theory, whether in the machine or in the animal”
(Wiener 1948). In particular, an artificial machine, such as a bio-
robot, should make a good model of biological behavior provided
it brings to life the underlying working principles, whether iso-
morphically or not.

Such widespread muddle about biological modeling in the face
of its longstanding acceptance as a basic scientific tool, calls for
soul searching. It is perhaps worthwhile to recall that, as with any
genre of modeling, the makings of a heartthrob lie not only in the
mere physique, but in the inner beauty of the heart and the soul.
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Abstract: It appears there is general support amongst the com-
mentaries for the potential usefulness of biorobots as models, with
some caveats. These include the issue that not all areas of biology
have been addressed by this methodology (and perhaps some can-
not be?); and that other methodologies may sometimes be more
useful. Which dimensions of biorobotic (or other models) are con-
sidered important varies with the goals of the investigator. These
goals are also an essential part of the “modelling relationship.”

Figure 1 (Young & Poon). Illustration of top-down and bottom-up scientific approaches in
four scenarios. Upper layers (in relative scale) represent more integrated phenomena and
lower layers the more elemental, with top-down modeling being shown in blue and bottom-
up in red as indicated by directions of arrows. The width of a colored region indicates the gen-
erality of model predictions and/or breadth of direct evidence at corresponding layer, while
fading indicates the lack of direct evidence in support of model predictions at that layer. Left-
most: Top-down inference of large-scale fundamental phenomena by deductive generaliza-
tion of specific experimental observations at top. Left-of-center: Early stage of reductionist
approach in which a large-scale problem is divided into a set of reduced problems, each be-
ing tackled incrementally and recursively by successive applications of top-down data-driven
hypothesis formulation and bottom-up hypothesis-driven experimentation on a small scale.
Right-of-center: Final stage of reductionist approach, when a large-scale problem is solved
with accumulation of knowledge through the process of divide-and-conquer. Rightmost: Bot-
tom-up solution of a large-scale problem beginning from prime data at bottom and then work-
ing upward – a strategy that is made possible by modern technology but may be limited by
the problem’s complexity.
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R1. Introduction

To date, the interaction of biology and robotics has been
principally regarded as an approach to robotics, that is, the
use of biological inspiration to address engineering prob-
lems. In the target article I hoped to establish that there was
now a substantial body of “biorobotic” work that could be
regarded as an approach to biology, that is, the use of engi-
neering technology to address biological problems. It
seemed evident that this work should be set in the context
of other models in biology, but in many ways, setting out the
grounds for comparison between models proved to be the
larger endeavour. This resulted in a review that tried to
tackle the notion of modelling in general, as well as robot
models in particular. In doing so it perhaps tried to do too
much, leaving some confusion over the target article’s in-
tentions, or the claims being made. In response to the com-
mentaries, I will here try to clarify several such points. In
some cases, this may remove disagreements; in other cases
it may at least sharpen the focus on the grounds of dis-
agreement. I will start with the more specific issues re-
garding robots and move on to the more general consider-
ations of modelling.

R2. Some robots have proved to be 
good models of some biology

It would seem that the majority of commentators agree that
biorobots have something to offer as models of biology.
Some are relatively enthusiastic in support (Banquet et al.;
Chang; Delcomyn; De Lillo; Effken & Shaw; Frances-
chetti; Jaax; MacIver; Metta & Sandini; Midford;
Reeke; Sugar & McBeath), some agree, but with caveats
(Hokland & Verijken; Miller & Arcediano; Pickering;
Selverston; Steels; Marin & Oullier). A few cast doubt
on whether the approach is really worthwhile (Neumann et
al.), or whether it has yet demonstrated its usefulness in 
biology (Niebur et al.), or whether robot models can suf-
ficiently represent certain complex biological issues (Bala-
subramaniam & Feldman; Belzung & Chevalley;
Krause; Pepperberg). The remaining commentaries are
essentially noncommittal with regard to biorobots, pursuing
other issues raised in the article, such as the nature of mod-
els and modelling (Damper; Franklin; Giere; Killeen;
Kötter; Lohmann; Schank; Scheutz; Young & Poon).

Among the supporters of the general approach, some
limitations and weaknesses of current work in biorobotics
are raised. Delcomyn takes up the point that models need
to be aimed at critical biological questions, and properly as-
sessed, if they are to be considered relevant and recognised
by biologists. Effken & Shaw suggest that the problems in
evaluating the match of robot and animal behaviour might
be helped by adopting some measurement techniques from
ecological psychology. Neumann et al., in a critique that
will be discussed further below, note that simply being a
real world device does not mean that the robot’s physical in-
teraction with the world is comparable to the animal: it is
still important to consider the accuracy of the representa-
tion of noise, physics, and so on. Selverston also points out
the substantial differences between organic and man-made
devices, such as muscles and standard robot actuators.
Selverston also argues that more is needed to demonstrate
the behavioural match and that working with biologists is a
good route towards this. I agree with all these points.

Nevertheless, the “abundance of examples” (Midford)
discussed in the article make it hard to accept Niebur et
al.’s suggestion that “the flow of information between biol-
ogy and robotics is at present almost entirely one-direc-
tional” and that there are few if any cases in which robotic
models have led to genuine insight into biology. Within the
other commentaries are further examples, such as Sugar &
McBeath’s description of how, using a robot to model ball-
catching, they discovered issues not covered in previous
mathematical models, and found one approach advanta-
geous under real world constraints, prompting experiments
to confirm if this approach was used by biological fielders.
I hope this goes some way towards satisfying Niebur et al.’s
demand for “non-trivial successful predictions” from work
in biorobotics.

R2.1. Not all biology is currently well-modelled 
by robotics

A number of the commentaries express reservations re-
garding biorobotics on the basis that the robot work de-
scribed in the article fails to include aspects of behaviour
that they consider important. Thus, Pepperberg mentions
“exaptation, observational learning, and complexity”; Ma-
rin & Oullier: problems of human development and learn-
ing; Belzung & Chevalley: the range of interacting sys-
tems underlying emotional expression; Krause wonders,
“of what use are biorobots to comparative psychologists
studying complex cognitive traits”; Pickering suggests that
“to be plausible, biorobots will need to build themselves”
that is, be autopoietic systems; and Hokland & Vereijken
feel that adaptivity (Hebbian plasticity) is essential.

Not all these issues are applicable to all biological sys-
tems. It is hardly a failure for robots aimed at explaining
cricket phonotaxis or ant polarised-light navigation if they
do not demonstrate intelligent observational learning, com-
plex cognition, or believable human emotion. Nor was it in-
tended to claim that biorobots will ultimately explain all bi-
ology: of course we “should be extremely cautious in
assuming we can understand all neural mechanisms with
physical models” (Selverston). Moreover, it seems obvious
that biorobots (no more than other kinds of models) can
make little headway in areas where we really as yet have no
idea of the biological mechanisms underlying the behav-
iour. As discussed in the article, biorobots should be de-
ployed at a level which is relevant to current biological un-
derstanding. With these considerations in mind, what can
be said about the potential for a contribution from bioro-
botics in the areas raised by the commentators?

R2.1.1. Higher cognition? Effken & Shaw rightly note
that the biorobotic approach has a certain affinity with eco-
logical psychology, with its stress on the interaction of the
organism and environment as an essential determinant of
the behaviour, and on the organism as an active system.
Such views are used by some as arguments that the bioro-
botic approach will have an important role in explaining
more complex, cognitive behaviours. Metta & Sandini ar-
gue the necessity for understanding cognition in the con-
text of action; Pickering cites Piaget on the importance of
active behaviour, and concludes that “cognition is biologi-
cal action”; and Banquet et al. present a robot system that
uses grounding in the real world as a “lever” to simplifica-
tion in complex tasks (including a form of imitation learn-
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ing). However, it is fair to question whether such ap-
proaches will “scale-up,” as not all subscribe to this view of
how cognition should be understood. The future success or
failure of biorobots based on such principles may help an-
swer this question.

R2.1.2. Adaptivity? The issue of “adaptivity” also reflects a
difference of views within biology, this time regarding the
importance of adaptive processes for understanding neural
systems. For example, can we look at an adult mammalian
retina, and try to “reverse engineer” it as a more or less
hardwired system; or must the fact that it evolved, devel-
oped, and may in future be shaped “adaptively” take prece-
dence in any and every analysis of the function? Much of
what we currently understand best about neural circuits has
come from focus on the “hardwired” aspects, though there
is no doubt that in the future issues of growth and change
need to be tackled. In any case, as many examples of bioro-
bots do include mechanisms of neural plasticity, this is
clearly not a “in principle” problem with the approach. This
is not to say that “simple conditioning” will suffice (as
Marin & Oullier and Pepperberg seem to assume is
claimed in the article) – biorobots will need to model more
sophisticated learning mechanisms to emulate biology. But
there seems no a priori reason why they cannot do so.

R2.1.3. Evolution? The problem of exaptation, or the evo-
lutionary history of animal mechanisms is mentioned by
several commentators (Pepperberg; Krause; Killeen;
Miller & Arcediano; Belzung & Chevalley). It is true
that being built by evolution is an extremely important con-
straint on animal mechanisms, and also that a robot built by
design to perform the same task, not having to take the
same development route, may well have a different mech-
anism. But does exaptation prevent us from understanding
the current functioning of a biological mechanism? If not,
then we can attempt to build a robot model that is accurate
to the biology even if that is not the approach that “pure”
engineering would suggest. There is also an entire subfield
of robotics that tries to use evolutionary principles as part
of the design process (Nolfi & Floreano 2000). Brooks
(1986) has argued for an “exaptation” approach to “behav-
iour based” robotics, by using a “subsumption” architecture
in which layers of increasingly complex behavioural con-
trollers are built on top of simpler ones. Midford’s com-
mentary makes another interesting suggestion: that claims
about evolutionary homology in animals might be tested by
trying to convert a successful robot model of the behaviour
of one animal into a model of the other.

R2.1.4. Life itself? Finally, I would note that the endeavour
to model living systems is not necessarily an attempt to cre-
ate living systems. If biorobots fall short of true autopoietic
autonomy (Pickering), this does not necessarily make
them failures as models (no more than the inability to 
“duplicate living processes with nonliving materials”
[Selverston] or the worry that “robots . . .  cannot have an
emotional feeling” [Belzung & Chevalley]). Indeed, a
self-creating robot – fascinating as such a thing would be –
might be less useful as a model because we may understand
no more about how it works than the original biological sys-
tem. On the other hand, Maturana and Varela’s (1987)
views on living systems are certainly a motivation for un-
dertaking the environment-oriented modelling that bioro-
bots provide, although I have found (contra Pickering’s

suggestion) that their theory falls somewhat short of the
specificity needed to produce working robot systems.

R2.2. Not all robots are good biological models

It should be apparent from my discussion of criteria for in-
cluding only some systems as “biorobots” (sect. 1.4) that I
do not intend to suggest that all robots make good biologi-
cal models, or that all of engineering has application to bi-
ology. So, to discuss, as do Balasubramaniam & Feld-
man, how conventional robots, airplanes, chess-playing
computers, and thermostats make bad biological models is
simply beside the point. If, to take their main example,
force-control models for motor control are structurally in-
accurate and conflict with “common observations,” and bet-
ter models are available, then all I am suggesting is that it
might be informative to test the better models in robot im-
plementations. I am not trying to defend as good biology,
engineering solutions that contradict basic biological data.

Two issues have to be kept in mind here. One is discussed
particularly by Chang: not all robots currently presented as
“biorobots,” “bio-mimicks,” or “bio-inspired” are seriously
intended as biological models. However, the labels make it
understandably difficult for the biologist to judge what is
being claimed, and they may well feel disappointed in the
field when they encounter “bio”-robots that really have lit-
tle connection to biology. I can only plead that this is not
sufficient grounds to condemn the whole approach.

The second issue is that a “good” biorobot model, in the
sense of one that is productive for further understanding in
biology, may nevertheless fall a long way short of “simula-
tion of the whole behaviour of the system” (Belzung &
Chevalley). Miller & Arcediano argue that the primary
purpose of models is to incite investigators to perform ex-
periments. Inadequate models can often serve this purpose
by prompting detailed critique, counter-modelling, and
further investigations aimed at demonstrating their inade-
quacy. In this sense they can still be “good” models even if
clearly not sufficient to explain the behaviour of interest.
This is one reason why, in cases where we have no better
model, an engineering solution to a task that closely re-
sembles a biological problem may be useful to consider.
Moreover, it is not always true that “from an engineering
point of view . . . biological relevance is not important”
(Neumann et al.), as illustrated by Jaax’s example of
biorobotics in prosthesis design, where “design goals are
closely congruous to those of biological modelling” and
“striving for structural accuracy minimises the likelihood of
inadvertently omitting a key behaviour” required for a
match in capability.

R2.3. Undetermination

A more general criticism raised in Pepperberg; Krause;
Balasubramaniam & Feldman; and Miller & Arcedi-
ano is that the article doesn’t take seriously enough the
problem of underdetermination. That is, having a robot be-
have like an animal is no guarantee that the animal works
the same way. Krause raises the example of a hypothetical
robot built to imitate the kinds of eye-gaze following and
pointing behaviours taken as evidence for “theory of mind”
in humans and primates.1 He suggests the robot would not
help resolve the controversy over whether such behaviour
in chimpanzees really means they have a “theory of mind.”
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On the contrary, it would be an excellent way to resolve this
controversy. The current problem is that we cannot know,
independently of observing its behaviour, if the chimp re-
ally has a “theory of mind.” If we knew the robot had no
“theory of mind” module or mechanism, but could still be-
have like the chimp, then it would be clearly a mistake to
attribute a “theory of mind” to the chimp purely on the ba-
sis of this behaviour. On the other hand, if we found it im-
possible to generate such behaviour without coming up
with a “theory of mind” mechanism for the robot, then we
would feel more convinced that the chimp’s behaviour was
good evidence for such capability. In other words, a robot
can be a powerful way to explore the connection between
behaviour and causal mechanisms, and hence evaluate ar-
guments that assume causal similarity from analogical be-
haviour.

De Lillo offers a similar example, in the context of ani-
mal search behaviour, of how, by using a robot, we can test
whether relatively simple controllers can actually explain
some apparently complex behaviours (particularly when in
interaction with complex spatial structures in the environ-
ment) before assuming more complex cognitive capabilities
are indicated by the behaviour. Pepperberg correctly as-
serts that “an existence proof by robotic simulation that
shows that an animal does not, for example, need a cogni-
tive map does not mean that such a map is not used.” But
it does suggest that biologists should provide better behav-
ioural evidence before building complex theories based on,
or trying to discover the neural correlates of, such a map.
As Killeen concludes, robots can help sharpen Ockham’s
razor.

R3. Biorobotic modelling is not 
the only valid approach

To argue that biorobots make good models is not to argue
that other kinds of models are not also valid, nor would it
be surprising if “hardware models of biological systems will
never become a method for everyone” (Niebur et al.). A
variety of techniques and approaches is always healthy in
any science. Biorobots are not going to replace computer
simulations, as they are complementary tools. Nor is the
fact (alluded to by Neibur et al.) that some researchers re-
turn to simulation after building a robot an indication that
they learnt nothing by building the robot, any more than a
return to direct experimentation indicates that time spent
modelling was wasted.

R3.1. Simulations may sometimes be better models

Neumann et al. make a more concerted argument that
biorobots “have no fundamental advantage” over computer
simulations for biology, and that computer simulations can
be more accurate, more tractable, and more useful tools.
This conclusion is to some extent a result of basing their dis-
cussion on the particular systems they are investigating. Vir-
tual reality may offer “photorealistic” environments for vi-
sual stimuli, but modelling turbulent chemical plumes or
even sound propagation in an environment of varied sur-
faces is still extremely difficult. Although some simulations
may include all the environmental details of the real world,
the simple fact is that the majority of simulations do not.
Rather, they include what the modeller thinks to be impor-
tant, that is, they tend to be biased towards the hypotheses

to be tested. For example, Delcomyn describes how insect
walking simulations generally have “the types and strengths
of sensory signals that the researchers believe will be gen-
erated at various times during the stepping cycle” rather
than the “sensor feedback [depending] on actual move-
ments of and loads of the legs” derived from legged-robot
implementations. Despite excellent efforts at simulating
motion dynamics, gravity, friction, and noise, engineers still
find physical models useful to confirm their conclusions.
MacIver provides an example where a “passive walker”
turned out to be stable when simulations predicted it would
not, and also mentions important insights in fluid phenom-
ena for animal propulsion discovered through a physical
modelling.

The issue is not one of restricting ourselves only to ro-
botics or computer simulations, but using either or both (or
going back to experimentation) depending on the particu-
lar questions, state of knowledge, and state of hardware and
software technology we can bring to bear. In this respect, it
is important to note that computer software, mathematics,
and language are also “substrates” that can limit or influ-
ence the models we build (Killeen; Miller & Arcediano).

R3.2. Robots may be used in ways 
other than as models

Steels suggests a division in scientific activity between con-
structing the kind of biorobots focused on in my article, for-
mal modelling, and “building artificial systems.” My initial
reaction is to see these as different approaches within the
broad continuum of “model space,” rather than to agree
that we have a “truly alternative type of scientific activity”
in the latter case. Thus, in the “methodology of the artifi-
cial,” he describes models that are good in match, physical
in medium, require more detail than formal models, but are
not necessarily accurate in structure.

One problem here is the word “realistic.” Steels seems
to use it at least four different ways within his commentary.
Is the robot a “faithful realistic” replica (detail)? Does it
have realistic assumptions or mimic biological solutions (ac-
curacy)? Does it have to operate under realistic constraints
(medium)? Does it represent a real target system (rele-
vance)? Insofar as my article attempts to restrict what
counts as “biorobotics,” it is only relevance (the biology)
and medium (the robotics) that are required. As I tried to
point out in the article, I do not believe “faithful” models
are always essential (e.g., in sect. 3.5: “It is possible for a
model to address ‘real’ biological questions without utilis-
ing accurate mechanisms”).

However, I think the key disagreement underlying Steels’
discussion is my grouping together of the two questions I
list under “relevance”: “Is the biological target system
clearly identified? Does the model generate hypotheses for
biology?” And this relates to his contention that “compar-
ing is not the same as mimicking or modelling.” A model
that is “irrelevant” in the sense of having no clear target is
arguably not a model at all, because it is not intended to rep-
resent any (real) thing. However, as Steels notes, such a
system might still potentially generate hypotheses for biol-
ogy, through a process of comparison. It seems the current
“misunderstanding of the methodology of the artificial”
may be another symptom of the “model muddle”: because
the methodology can resemble modelling but is not (al-
ways) intended as modelling. In fact, it does not seem to me
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that the “artificiality” is key here; we might also generate hy-
potheses by comparing two biological systems without
wanting to call one a model of the other.2 

My defence, in this case, is that the scope of the article
was only to assess those robots that are meant to be models
of biology, rather than assess all possible uses of robots in
advancing biological understanding. This defence is also
pertinent to Midford’s commentary. He suggests several
other “physical models” that could have been included in
my discussion: a mechanical bee, a die-cast lizard replica
used to study thermoregulation, and a mount of a hawk
used to study prey reactions to predators. Presumably, he is
only suggesting the first is actually a robot. It is debatable
whether even this (preprogrammed) device could be said
to “have sensors and actuators and require an autonomous
control system that enables [it] to successfully carry out var-
ious tasks in a complex, dynamic world” (target article, sect.
1; this definition in the introduction was assumed when
later I narrowed down “robotic” as meaning real sensors,
actuators, and worlds). However, even it if it is a robot, it is
not so obviously a model. The robot was being used to stim-
ulate, not simulate, the mechanisms of dance recognition in
bees. The same applies to the hawk – the target system to
be explained is the behaviour of the juncos, and the hawk is
an experimental tool to test hypotheses about this behav-
iour, rather than a direct representation of the hypothetical
mechanisms.3

The lizard, on the other hand, is a good example of a (non-
robot) physical model, and indeed illustrates some similar
advantages of physical modelling as those discussed in the
article. I am willing to accept the suggestion that “bioro-
bots” are “merely an evolutionary advance in existing meth-
ods for studying behaviour” (Midford) – it is then a ques-
tion of definition how much “evolutionary advance” suffices
to classify something as a ‘new species” of methodology.

R4. Determining dimensions

R4.1. The suggested dimensions are not definitive

Several commentators seem to have taken my intention in
describing the different dimensions as an attempt to spec-
ify “acid tests . . . any particular model should . . . pass at
least a subset of these if claims of usefulness are to be sub-
stantiated” (Damper) or “constraints” that must be “satis-
fied” (Balasubramaniam & Feldman) or “criteria for as-
sessment” (Young & Poon). Sugar & McBeath seem to
be implying the same when they discuss meeting “Webb’s
criteria for a useful scientific endeavour” or “validity test
demands,” but in practice they use the dimensions rather
more as I intended, that is, to spell out and justify the na-
ture of their model. The dimensions are meant to be a way
for researchers to describe their modelling approach more
clearly, rather than a set of tests that define a “good” model.
Indeed, Kötter suggests I have “begged the question” in
the paper’s title by failing to specify what position on the di-
mensions makes a model good; Reeke feels that I have
“quite rightly refrained from value judgements” with regard
to the dimensions.

I agree with Giere that what makes a model “good” is de-
pendent on scientific goals, or as I said in my target article
conclusion, “Different approaches to modelling will reflect
differing views about the processes being modelled, and the
nature of the explanations required.” What I hoped to make

clear in the article was how “the justification of the bioro-
botic approach is grounded in a particular perspective on
the issues that need to be addressed,” that is, to discuss
some of the goals with respect to which robots make good
models. Along the way I hoped to illustrate that many ap-
parent disagreements over the “correct” position on the di-
mensions are in fact disagreements over goals.

This diversity can be clearly seen in the different opin-
ions expressed within the commentaries as to which are the
most important dimensions. Thus, Delcomyn and Kötter
emphasise the relevance – answering real and critical ques-
tions in biology – as the key issue for biorobotics. Selver-
ston and Hokland & Vereijken are concerned about the
level – for Hokland & Vereijken this must be no higher than
a neural network, and Selverston is concerned by the “in-
ability [of biomimetic robots] to mimic biochemical
processes that are at the heart of physiological processes.”
By contrast, Chang accepts as “biomimicry” the “close re-
semblance of a robot to a biological organism at the anatom-
ical, physiological, functional or behavioural level.” Schank
focuses on generality and the importance of finding general
mechanisms, or “core ideas” through modelling different
systems. Reeke, Lohmann and Kötter discuss the prob-
lem of getting the abstraction level right: Kötter raises the
notion of the “minimal model,” which might seem to be the
ideal point in this dimension, that is, “the simplest model
that still adequately represents a certain hypothetical
mechanism.” Young & Poon consider accuracy to be the
“heart and soul” of modelling, while medium is relatively
unimportant, and Neumann et al. and Balasubrama-
niam & Feldman also seem to use accuracy as their main
criteria for assessing models. Hokland & Vereijken argue
that the match should be “indistinguishable” at the level of
limb movements; while Miller & Arcediano, Pepper-
berg, and Krause stress that “merely” matching behaviour
proves nothing. Finally, the medium is seen as the really
defining feature of this modelling approach by Steels (who
does not consider accuracy as necessary), by Midford (who
sees a natural grouping with other physical models), by
Metta & Sandini, and by De Lillo, who endorses the
“medium argument” as providing the right kind of “com-
plete” structural accuracy constraints.

R4.1. The description of dimensions could evolve

Schank is quite correct to characterise my framework 
as not a formal analysis, and as likely to co-evolve with 
modelling. Indeed, the framework went through several
modifications in different drafts of the paper, and I am
pleased to see several further modifications suggested by
the commentaries (though surprised not to see more).
Franceschetti somewhat misunderstands my Figure 2 as
representing a plane as opposed to a seven-dimensional
“hyperspace.” He then suggests an initially appealing pic-
ture in which the opposite ends of the dimensions from
“identity” converge to describe a formal or “abstract, gen-
eral, and symbolic” model. However, this is effectively to
reintroduce some of the assumptions I intended to chal-
lenge – for example, that being symbolic was necessarily re-
lated to being abstract; that abstraction would automatically
confer greater generality and so on. Franceschetti also
suggests the dimensions need “extending” to cover non-ma-
terial models, and Young & Poon suggest that I provide a
lexis for bottom-up models but not top-down models. How-
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ever, I think that the general, abstract, symbolic models
they discuss do fall within the space I have delineated, al-
beit at the opposite end of the dimensions from most of the
models I discuss.

R4.1.1. Integrativeness. Several commentators suggest that
“integrativeness” would be a useful additional dimension
(Schank, Miller & Arcediano, Kötter, Belzung &
Chevalley, Banquet et al.). This seems plausible to me.
It is not directly correlated with any of the other dimen-
sions. It can refer both to between and within level attempts
to combine information. It may in certain situations be pre-
ferred to detail or to part-by-part accuracy. It may still be
specific to a particular system, described from different
points of view, or be a way to aim at generalising across dif-
ferent systems. It can be attempted in any medium, and can
aim for different degrees of relevance or match. It is often
a consideration in building or assessing models. It is a good
way to characterise the idea of “complete” models that I dis-
cuss in section R4.5.

R4.1.2. Usefulness? Jaax also suggests “usefulness” as an
additional category. In fact, in earlier drafts of the target ar-
ticle I included a dimension of “utility,” meant to encom-
pass various kinds of potential usefulness for models: for ad-
vancing biological understanding (although this overlaps
with relevance); for applications and technology as Jaax is
suggesting (which perhaps overlaps with generality, that is,
other systems the model can be used for); or for other pur-
poses such as biological control, communication of ideas or
education. It was not included in the final scheme because
it seems obvious that a “good” model should be useful, and
that few scientists set out to build useless models. A possi-
ble distinction could be drawn, however, between the in-
tended purpose of the model and how useful it actually
turns out to be.

R5. Do we know what models are?

Rather to my surprise, only two commentaries offered al-
ternative accounts of the notion of “models” and “model-
ling.” Belzung & Chevalley refer to the idea of a model
presented by Hertz. It is important first to note that, 
insofar as they argue that “models” are different from “sim-
ulations,” they are using “simulation” in the sense of “re-
semblance.” This is not the same as the idea of “correspon-
dence” that is use to characterise “simulation models” in the
article. In fact, Hertz (1894/1956) in his Introduction de-
scribes how we endeavour to draw inferences by forming
“images” (“innere Scheinbilder”) or symbolic descriptions
of external objects, such that the consequences of the im-
ages match the consequences observed in nature. This
seems to be quite consistent with my discussion of “hypo-
thetical models.” Hertz also draws a distinction between
such theoretical images and the actual representation of
them in some notation, which parallels my discussion of
representing hypotheses in simulations, using a particular
technology. However, it is true that in his later discussion of
dynamical models (Hertz 1894/1956, Book II, p. 418), he
suggests the relationship of mental images to things is “pre-
cisely the same” as the relationship of bijective mapping of
co-ordinates between two physical systems (referring in
this case specifically to the kinetic behaviour of connected

systems of masses) – that is, suggesting it is an isomorphic
relationship. Although it is not obvious that Belzung &
Chevalley would agree with this (they mention “strict cor-
relation” in laws of evolution between system and model
[my emphasis], but they also suggest that novels are “excel-
lent models of the behaviour of living things”), it leads us
conveniently to the issues raised by Scheutz.

Scheutz points out that I have incorrectly used a term
from “model theory” in mathematical logic, where “partial
isomorphism” is defined as a relationship between systems
that have isomorphic substructures. I meant to refer the il-
logical notion of “incomplete” isomorphisms, for example,
cases like “Anna Karenina” and “nineteenth century Rus-
sia” where though some correspondences can be found, a
complete bijective mapping preserving all structural prop-
erties is not (even in principal) possible to demonstrate for
the structure of (or any well-defined substructure within)
the two systems.

More importantly, he uses the notion of “partial isomor-
phism” to argue against my contention that a general and
explicit notion of “model,” that can explain the practice of
modelling in science, is not available. He starts by making
a distinction between systems and the description of these
systems in a (formal) language that can support deduction.
So, to establish a modelling relationship between two sys-
tems, Scheutz suggests that we perform the following steps:

1. Describe the parts of the target system at some level.
2. Describe the parts of the model system in a common

language.
3. Establish a bijective mapping that preserves structure

between subsets of the two descriptions.
This allows us to perform deduction on the (description

of the) model system to derive conclusions we can apply to
the (description of the) target system, provided we restrict
ourselves to the relevant subsets.

It seems to me that (1) is equivalent to the step of stating
a theory or hypothesis about a system, and thus the map-
ping described in (3) is the representation of a hypothesis
in a model. That is, it is the relationship described by the
arrows between “hypothetical mechanism” and “simula-
tion” (or “source”) in my Figure 1.4 In the target article I
described this process as “modelling aims to make the
process of producing predictions from hypotheses more ef-
fective by enlisting the aid of an analogical mechanism”
(sect. 2.2). What Scheutz is proposing then (if I have fol-
lowed correctly) is that we can replace “analogical mecha-
nism” in this phrase with “partially isomorphic system,” and
thereby use logical model theory to validate our reasoning.
Note that what we thus “deduce” with the model are not
conclusions about the target system itself but rather con-
clusions about our description of the target system. Unless
we already have reason to believe our hypothesis is a cor-
rect description, we still need to test these conclusions
against the actual behaviour of the system to validate the
theory.

So far so good, and I will even agree that in this sense the
formal notion of isomorphism “captures our intuitions”
about models. For example, I might say my cricket robot is
a model of the cricket because the neural simulation in the
robot’s control program can be mapped to my theory of the
neural connections underlying the relevant behaviour in
the animal. The problem is that I would be hard put to
prove this was a “bijective mapping” that fully preserves
structural properties. Not having done so, I cannot claim to
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have established a “partial isomorphism” in the model-the-
oretic sense. Is it therefore the case that my “cricket” robot
(and all the other robots described in the article) are not
actually models? If not, they would at least be in good com-
pany, for few other so-called “models” in biology fit this cri-
terion. To take just one famous example – Crick and Wat-
son’s physical model of DNA used shaped bits of metal that
(as Giere points out) were rather approximate in their rep-
resentation of hypothesised molecular structures. In Wat-
son’s (1968) description of their work with this model he
notes “It was all too easy to fudge a successful series of
atomic contacts so that, while each looked almost accept-
able, the whole collection was energetically impossible.” In
other words, their model was an imperfect representation
that could result in faulty deductions.

But if we cannot demonstrate a partial isomorphism,
what, asks Scheutz, “warrants the claim that a robot system
is a model of an animal with respect to X”? I had no inten-
tion of being covert in what I meant by “a robot system is a
model of an animal.” I meant the robot is being used as a
model of the animal. That is, I intentionally conflated the
“modelling relationship” with “modelling” qua practice. To
be explicit, I consider there to be no “independent onto-
logical” question, any more than, when a poet uses one
thing as a metaphor for another, there is an “independent
ontological” question as to whether “such a metaphorical
relationship” actually exists between the two things.5 That
is, going beyond Giere, not only is it the case that you “can-
not eliminate the purposes of scientists from the evaluation
of any model,” it is my belief that you cannot eliminate their
purposes from the question of whether the system is a
model at all.

NOTES
1. In fact, there is an actual robot built to investigate this issue,

discussed in Scassellati 2001.
2. Some might argue that the operation of comparison, requir-

ing that two systems be put in some kind of correspondence so that
we can observe the similarities and differences, is a sort of de facto
modelling (e.g., Krause describes cladistics as the use of real an-
imals as “models” of other animals). However, I do not think this
is generally appropriate.

3. There is a sense in which an experiment can (also) be de-
scribed as a kind of model, in that we are setting up a system to
generate the behaviour that follows from our hypotheses (e.g., us-
ing a particular group of juncos to represent all prey, and the arti-
ficial hawk behaviour to represent the hypothesised causes for the
prey’s response). Miller mentions lab experiments as representa-
tions of real ecological niches. Killeen discusses how an experi-
mental rat may not only be a model of a human, but also a model
of “itself in a within-subjects’ design.” Schank notes that Levin’s
discussion of modelling suggested an extension of the notion of
models to cover experiments. Nevertheless, (as for comparison in
Note 2) it seems reasonable to draw a general distinction between
experiments on a target system and simulation of a target system.

4. Or, as Damper quotes Moor (1978), it is the idea that a
model can “embody a theory”; – note that he also recognises there
can be a problem in determining exactly what theory a particular
model embodies.

5. This is not to deny that the choice of a metaphor or model,
and its subsequent productivity or value, will depend in some way
on the richness of the structural mappings we can make between
their domains and their targets. The point is we can construct and
use untidy and incomplete mappings without ever being close to
proving the existance of an isomorphism (partial or otherwise).
There has been much interesting work recently on the theory of
metaphor (Lakoff 1993) and the nature of analogical reasoning

(Gentner 1983) that seems more applicable than logical model
theory in understanding how we use models in scientific practice.
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